Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474650

ABSTRACT

Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based on Ag nanoparticles with 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H spiro[cyclohexane1,2'-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16). The nanostructure of the prepared ionic liquid was characterized using techniques such as FTIR, 1HNMR, 13CNMR, UV, SEM, and TEM. The biological activity of the prepared compound (P16) and its nanocomposites with Ag nanoparticles was tested using five clinical bacteria (Pseudomonas aeruginosa 249; Escherichia coli 141; Enterobacter cloacae 235; Staphylococcus epidermidis BC 161, and methicillin-resistant S. aureus 217), and three Candida species (Candida utilis ATCC 9255; C. tropicalis ATCC 1362, and C. albicans ATCC 20402). The FTIR, 1HNMR, and 13CNMR results confirmed the chemical structure of the synthesized P16 compound. The nanostructure of the prepared ionic liquid was determined based on data obtained from the UV, SEM, and TEM tests. The antibacterial and anticandidal results showed that the biological activity of the compound (P16) was enhanced after the formation of nanocomposite structures with Ag nanoparticles. Moreover, the biological activity of the compound itself (P16) and that of its nanocomposite structure with Ag nanoparticles was higher than that of ampicillin and amphotericin B, which were used as control drugs in this work.


Subject(s)
Ionic Liquids , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanocomposites , Silver/chemistry , Metal Nanoparticles/chemistry , Ionic Liquids/chemistry , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Candida albicans , Microbial Sensitivity Tests
2.
Polymers (Basel) ; 15(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447405

ABSTRACT

Nickel ions are hazardous heavy metals that are non-biodegradable and can lead to allergic sensitivity and dermatitis. Nanomaterials are chosen for their effective elimination of impurities from water structures based entirely on the variety of therapy and degree of purification. The target of this work was the combination of the properties of biopolymers such as chitosan, silver nanoparticles (SNPs), and carbon nanotubes (CNTs) in one ecofriendly compound for Ni (II) uptake from the aqueous solution. To attain this target, the endeavor was made by creating a nanocomposite based on chitosan/SNPs/CNTs. The characterization of the structure of the fabricated nanocomposite (Chit-SNPs-CNTs) was carried out using different techniques. The removal of Ni (II) was examined by studying the adsorption of Ni (II) ions onto the fabricated nanocomposite by batch adsorption using UV, XRD, XPS, and ICP techniques. Moreover, we investigated the effect of the contact time, pH of the solution, and mass of the adsorbent on the efficiency of the adsorption of Ni (II). The results show that the adsorption capacity of Ni (II) increased by increasing the contact time with a neutral pH. The maximum removal of Ni (II) ions (99.70%) was found using 0.3 g of the (Chit-SNPs-CNTs) nanocomposite. In addition, the results indicate that the fabricated nanocomposite has a high adsorption effectivity, which is associated to the function of the chitosan, SNPs, and CNTs in upgrading the adsorption efficiency. Finally, the results in the existing work indicate that the ecofriendly nanocomposite organized here gave excessive effectivity closer to the elimination of Ni (II).

3.
ACS Omega ; 8(18): 16315-16326, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179644

ABSTRACT

The large sizes of cations and anions of organic salts are the driving force for the application of ionic liquids (organic salts) in harsh salty conditions. Moreover, the formation of crosslinked ionic liquid networks as anti-rust and anticorrosion protective films on the substrate surfaces repels seawater salt and water vapor from their surface to prevent corrosion. In this respect, an imidazolium epoxy resin and polyamine hardener as ionic liquids were prepared by the condensation of either pentaethylenehexamine or ethanolamine with glyoxal and p-hydroxybenzaldehyde or formalin in acetic acid as a catalyst. The hydroxyl and phenol groups of the imidazolium ionic liquid were reacted with epichlorohydrine in the presence of NaOH as a catalyst to prepare polyfunctional epoxy resins. The chemical structure, nitrogen content, amine value, epoxy equivalent weight, thermal characteristics, and stability of the imidazolium epoxy resin and polyamine hardener were evaluated. Moreover, their curing and thermomechanical properties were investigated to confirm the formation of homogeneous, elastic, and thermally stable cured epoxy networks. The corrosion inhibition and salt spray resistance of the uncured and cured imidazolium epoxy resin and polyamine as coatings for steel in seawater were evaluated.

4.
Int J Biol Macromol ; 89: 507-17, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27151669

ABSTRACT

In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution.


Subject(s)
Chitosan/chemistry , Copper/chemistry , Solutions/chemistry , Water Purification , Adsorption , Aluminum Silicates/chemistry , Clay , Gold/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Silver/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...