Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(46): 32532-32546, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37936642

ABSTRACT

The present work reported the synthesis of novel benzopyrimido[4,5-d]azoninone analogs using a biosynthesized Ag-TiO2 core/shell magnetic nanocatalyst. Accordingly, three-component one-pot reactions of benzoazonine-dione with thiourea and aryl aldehyde derivatives under nanocatalytic and optimized conditions afforded reasonable to brilliant yields of the target products (57-91%). The nanocatalyst was synthesized by a facile method using turmeric ethanol extract as a reducing and chelating agent. The synthesized nanocatalyst was verified by FT-IR, XRD, zeta potential, EDX, SEM, and TEM. The nanocatalyst presented remarkable catalytic activity for the synthesis of the target products. The procedure provided biosynthesis of the nanocatalyst, accessible reagents, high yields and rates of the reactions, nanocatalyst recyclability, and ease of product isolation and purification. The novel products were characterized by FT-IR, 1H-NMR, 13C-NMR, mass spectra, and 2D NMR analysis (COSY, NOESY, HMQC & HSQC) spectral analyses. The antioxidant activity was assessed by DPPH and phosphomolybdate assays, in which the compounds exhibited excellent potency. Overall, this approach could be used to develop new and sustainable methods for the synthesis of antioxidants and other biologically active molecules.

2.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501342

ABSTRACT

The present study was carried out to explore the possible role of kinetin and gibberellic acid (GA3) on faba bean under chromium (Cr) stress. Cr treatment negatively affected growth and biomass production, reduced photosynthetic pigments, and inhibited photosynthesis, gas exchange parameters, antioxidant enzymes, and the glyoxylase cycle. Moreover, Cr stress enhanced the production of malondialdehyde (MDA, 216.11%) and hydrogen peroxide (H2O2, 230.16%), electrolyte leakage (EL, 293.30%), and the accumulation of proline and glycine betaine. Exogenous application of kinetin and GA3 increased growth and biomass, improved pigment contents and photosynthesis, as well as up-regulated the antioxidant system by improving the antioxidant enzyme activities and the content of nonenzymatic components, and the glyoxylase cycle. Additionally, kinetin and GA3 application displayed a considerable enhancement in proline (602.61%) and glycine betaine (423.72), which help the plants to maintain water balance under stress. Furthermore, a decline in Cr uptake was also observed due to kinetin and GA3 application. Exogenous application of kinetin and GA3 ameliorated the toxic effects of Cr in faba bean plants, up-shooting the tolerance mechanisms, including osmolyte metabolism and the antioxidant system.

3.
ACS Omega ; 7(36): 31834-31844, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120047

ABSTRACT

Agricultural crops are facing major restraints with the rapid augmentation of global warming, salt being a major factor affecting productivity. Tomato (Solanum lycopersicum) plant has immense nutritional significance; however, it can be negatively influenced by salinity stress. Nanoparticles (NPs) have excellent properties, due to which these particles are used in agriculture to enhance various growth parameters even in the presence of abiotic stresses. The objective of this study was to investigate the effects of silicon NPs (Si-NPs) through root dipping and foliar spray on tomato in the presence/absence of salt stress. Plant root and leaf were used for the measurements of morphological, physiological, and biochemical parameters treated with Si-NPs under salt stress. At 45 days after sowing, the activity of antioxidant enzymes, photosynthesis, mineral concentration, chlorophyll index, and growth attributes of tomato plants were measured. The developmental processes of tomato plants were severely slowed down by salt stress upto 35.8% (shoot dry mass), 44.3% (root dry mass), 51% (shoot length), and 62% (root length), but this reduction was mitigated by the treatment of Si-NPs. Application of Si-NPs significantly increased the growth attributes (height and dry weight), mineral content [magnesium (Mg), potassium (K), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn)], photosynthesis [net photosynthetic rate (P N), stomatal conductance (gs), transpiration rate (E), internal CO2 concentration (Ci)], and activity of antioxidative enzymes including superoxide dismutase and catalase in salt stress. Foliar application of Si-NPs in tomato plants appears to be more effective over root dipping and alleviates the salt stress by increasing the plant's antioxidant enzyme activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...