Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Astron (Dordr) ; 53(1): 45-70, 2022.
Article in English | MEDLINE | ID: mdl-34658528

ABSTRACT

In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be used in various modes of operation. These are: direct imaging, spectroscopic, polarimetric imaging, and spectro-polarimetric. The KFISP is an all-refractive design to meet the polarimetric requirements and includes a focal reducer with a corrector section, collimator section, parallel beam section (containing various imaging components), and camera section. The corrector section gives an unvignetted Field-of-View of 8' × 8' and the collimator section has a focal length of 305 mm and matches the focal ratio of the input beam. The parallel beam section is 200 mm long and near the middle of it there is an image of the telescope pupil. The camera section includes 5 elements and has a focal length of 154.51 mm which gives an instrument effective final focal ratio of f/6.14 (acting as a telescope focal reducer of 1:2 ratio). The KFISP contains an internal calibration system which hosts the calibration light injection system, an integrating sphere equipped with the required calibration light sources. The opto-mechanical parts of KFISP contain a double-layered carbon fiber strut structure and comprises its subsystems of slit and guider assemblies, filter wheel drawer, grism wheel drawer, polarimetric components cubical box, and CCD camera which is integrated with camera optics. The CCD camera has 2048 × 2048 pixels with 13.5-micron square pixel size. The camera is cooled by liquid Nitrogen and is fixed to the KFISP through the integrated camera lens. The KFISP has been fully commissioned, mounted and is being tested in all modes of operation. In this paper we introduce the ambitious scientific goals, the optical setups of KFISP, its opto-mechanical implementation and the performance analysis of the instrument. In addition, we describe the camera system, its performance, and its software control. Finally, we present a sample of the first light observations obtained from the instrument.

2.
J Photochem Photobiol B ; 90(2): 95-104, 2008 Feb 27.
Article in English | MEDLINE | ID: mdl-18249003

ABSTRACT

This work presents the applicability of applying a fuzzy logic approach to the calculation of noontime erythemal UV irradiance for the plain areas of Egypt. When different combinations of data sets were examined from the test performance point of view, it was found that 91% of the whole series was estimated within a deviation of less than +/-10 mW/m(2), and 9% of these deviations lay within the range of +/-15 mW/m(2) to +/-25 mW/m(2).


Subject(s)
Expert Systems , Fuzzy Logic , Solar Energy , Ultraviolet Rays , Artificial Intelligence , Egypt
3.
J Photochem Photobiol B ; 90(3): 198-206, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18280747

ABSTRACT

The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.


Subject(s)
Artificial Intelligence , Erythema/etiology , Ultraviolet Rays/adverse effects , Algorithms , Egypt , Models, Theoretical , Neural Networks, Computer , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...