Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 4(6)2019 03 21.
Article in English | MEDLINE | ID: mdl-30721150

ABSTRACT

Airway mucin secretion is necessary for ciliary clearance of inhaled particles and pathogens but can be detrimental in pathologies such as asthma and cystic fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway secretory cells express all 3 Munc18 isoforms. Using conditional airway epithelial cell-deletant mice, we found that Munc18a has the major role in baseline mucin secretion, Munc18b has the major role in stimulated mucin secretion, and Munc18c does not function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the airway epithelium did not result in any abnormalities of lung structure, particle clearance, inflammation, or bacterial infection. Our results show that regulated secretion in a polarized epithelial cell may involve more than one exocytic machine at the apical plasma membrane and that the protective roles of mucin secretion can be preserved while therapeutically targeting its pathologic roles.


Subject(s)
Asthma/metabolism , Mucins/metabolism , Munc18 Proteins/metabolism , Respiratory Mucosa/metabolism , Animals , Cystic Fibrosis/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Exocytosis , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Munc18 Proteins/genetics , Respiratory Mucosa/pathology , Transcriptome
2.
Ann Am Thorac Soc ; 15(Suppl 3): S164-S170, 2018 11.
Article in English | MEDLINE | ID: mdl-30431339

ABSTRACT

Exocytosis of secreted mucins is the final step in their intracellular processing, resulting in their release into the airway lumen to interact with water and ions to form mucus. Mucins are secreted at a low baseline rate and a high stimulated rate, and both rates are regulated by second messengers acting on components of the exocytic machinery. The principal physiologic function of the low baseline rate is to support steady-state mucociliary clearance of inhaled particles and pathogens that enter the airways during normal breathing. Even in the setting of mucin hyperproduction, baseline secretion generally does not induce mucus occlusion. The principal physiologic function of the high stimulated rate of secretion from both submucosal glands and surface goblet cells in proximal airways appears to be to sweep away larger particles, whereas in distal airways it appears to act in concert with mucin hyperproduction to induce mucus occlusion to trap migrating helminths. Pathophysiologically, stimulated mucin secretion in the setting of mucin hyperproduction from allergic or other types of airway inflammation in the absence of helminth infection causes airflow obstruction and infection. Molecular components of the mucin exocytic machinery are increasingly being identified, and surprisingly, many components are not shared between baseline and stimulated machines. The physiologic significance of the presence of two distinct molecular machines is not yet known, such as whether these interact selectively with secretory granules of different sizes or contents. A full understanding of the mechanism and regulation of airway mucin secretion will provide further insight into pathophysiologic processes and may identify therapeutic strategies to alleviate obstructive airway diseases.


Subject(s)
Exocytosis/physiology , Lung Diseases/etiology , Mucins/metabolism , Mucociliary Clearance/physiology , Respiratory Mucosa/physiology , Humans , Lung Diseases/diagnosis , Lung Diseases/therapy , Mucus/metabolism , Secretory Vesicles/physiology
3.
JCI Insight ; 3(15)2018 08 09.
Article in English | MEDLINE | ID: mdl-30089720

ABSTRACT

With more than 150,000 deaths per year in the US alone, lung cancer has the highest number of deaths for any cancer. These poor outcomes reflect a lack of treatment for the most common form of lung cancer, non-small cell lung carcinoma (NSCLC). Lung adenocarcinoma (ADC) is the most prevalent subtype of NSCLC, with the main oncogenic drivers being KRAS and epidermal growth factor receptor (EGFR). Whereas EGFR blockade has led to some success in lung ADC, effective KRAS inhibition is lacking. KRAS-mutant ADCs are characterized by high levels of gel-forming mucin expression, with the highest mucin levels corresponding to worse prognoses. Despite these well-recognized associations, little is known about roles for individual gel-forming mucins in ADC development causatively. We hypothesized that MUC5AC/Muc5ac, a mucin gene known to be commonly expressed in NSCLC, is crucial in KRAS/Kras-driven lung ADC. We found that MUC5AC was a significant determinant of poor prognosis, especially in patients with KRAS-mutant tumors. In addition, by using mice with lung ADC induced chemically with urethane or transgenically by mutant-Kras expression, we observed significantly reduced tumor development in animals lacking Muc5ac compared with controls. Collectively, these results provide strong support for MUC5AC as a potential therapeutic target for lung ADC, a disease with few effective treatments.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mucin 5AC/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Animals , Biomarkers, Tumor , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , ErbB Receptors/genetics , Female , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Mice , Mice, Transgenic , Mucin 5AC/genetics , Mutation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Survival Analysis
4.
Biosci Rep ; 35(3)2015 Apr 28.
Article in English | MEDLINE | ID: mdl-26182382

ABSTRACT

Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated.


Subject(s)
Lung/cytology , Lung/metabolism , Mucins/metabolism , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Animals , Epithelial Cells/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics
5.
Am J Respir Cell Mol Biol ; 48(2): 220-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204390

ABSTRACT

ß(2)-Adrenoceptor (ß2AR) agonists are the most effective class of bronchodilators and a mainstay of asthma management. The first potent ß2AR agonist discovered and widely used in reversing the airway constriction associated with asthma exacerbation was the endogenous activator of the ß2AR, epinephrine. In this study, we demonstrate that activation of the ß2AR by epinephrine is paradoxically required for development of the asthma phenotype. In an antigen-driven model, mice sensitized and challenged with ovalbumin showed marked elevations in three cardinal features of the asthma phenotype: inflammatory cells in their bronchoalveolar lavage fluid, mucin over production, and airway hyperresponsiveness. However, genetic depletion of epinephrine using mice lacking the enzyme to synthesize epinephrine, phenylethanolamine N-methyltransferase, or mice that had undergone pharmacological sympathectomy with reserpine to deplete epinephrine, had complete attenuation of these three cardinal features of the asthma phenotype. Furthermore, administration of the long-acting ß2AR agonist, formoterol, a drug currently used in asthma treatment, to phenylethanolamine N-methyltransferase-null mice restored the asthma phenotype. We conclude that ß2AR agonist-induced activation is needed for pathogenesis of the asthma phenotype. These findings also rule out constitutive signaling by the ß2AR as sufficient to drive the asthma phenotype, and may help explain why chronic administration of ß2AR agonists, such as formoterol, have been associated with adverse outcomes in asthma. These data further support the hypothesis that chronic asthma management may be better served by treatment with certain "ß-blockers."


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Asthma/chemically induced , Disease Models, Animal , Ethanolamines/pharmacology , Animals , Asthma/physiopathology , Bronchi/physiopathology , Bronchoalveolar Lavage Fluid , Chromatography, High Pressure Liquid , Epinephrine/metabolism , Formoterol Fumarate , Mice , Mice, Knockout , Mucins/metabolism , Phenotype
6.
Biochem J ; 446(3): 383-94, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22694344

ABSTRACT

Airway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by ~50%. Homozygous mutant mice were not viable, but heterozygotes showed a ~50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxis was also reduced by ~50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identify Munc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs.


Subject(s)
Epithelial Cells/metabolism , Genes, Essential , Mast Cells/metabolism , Munc18 Proteins/genetics , Animals , Disease Models, Animal , E-Box Elements , Female , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Munc18 Proteins/metabolism , Passive Cutaneous Anaphylaxis/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...