Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(29): eadf1402, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37478177

ABSTRACT

Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.


Subject(s)
Biosensing Techniques , Graphite , Humans , Graphite/chemistry , Biomimetics , Electricity , Biosensing Techniques/methods , Transistors, Electronic
2.
Adv Mater ; 30(6)2018 Feb.
Article in English | MEDLINE | ID: mdl-29314326

ABSTRACT

State-of-the-art light-emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors, but high fabrication cost has limited their widespread use for large area solid-state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure 2D Ruddlesden-Popper (RP) halide perovskites with a formula (CH3 (CH2 )3 NH3 )2 (CH3 NH3 )n-1 Pbn I3n+1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr-1 cm-2 at 744 nm with an ultralow turn-on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase-pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm-2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes.

SELECTION OF CITATIONS
SEARCH DETAIL
...