Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 141013, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145847

ABSTRACT

Photocatalysis has emerged as a highly effective method for eliminating organic pollutants from wastewater. The immobilization of photocatalysts on a suitable solid surface is highly desired to achieve enhanced photocatalytic activity. In this work, graphitic carbon nitride (g-C3N4) is synthesized with three different precursors (melamine, thiourea, and urea) via a simple thermal exfoliation method and successfully immobilized on a polyurethane (PU) foam using the facile dip coating method. The photocatalytic activity of g-C3N4 bulk and g-C3N4 nanosheets-coated PU foams are compared using methyl orange dye and tetracycline hydrochloride as a test pollutant under visible light irradiation. Our results show that the type of precursors and surface area of the sample have a significant role in photocatalytic dye degradation. The urea-based g-C3N4 - PU foam shows better photocatalytic activity than the melamine or thiourea based g-C3N4 - PU foam. The scavenger test unveils that superoxide radical (O2●-) and holes (h+) are the main reactive oxidative species responsible for MO dye and TcH degradations. The cycling experiments are also carried out to confirm the reusability of the g-C3N4 floating catalyst for practical applications. Furthermore, a possible reaction mechanism has also been proposed.


Subject(s)
Environmental Pollutants , Polyurethanes , Light , Urea , Thiourea
SELECTION OF CITATIONS
SEARCH DETAIL
...