Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 43(5): 2289-2304, 2021 10.
Article in English | MEDLINE | ID: mdl-34674152

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is essential for SARS-CoV-2 cellular entry. Here we studied the effects of common comorbidities in severe COVID-19 on ACE2 expression. ACE2 levels (by enzyme activity and ELISA measurements) were determined in human serum, heart and lung samples from patients with hypertension (n = 540), heart transplantation (289) and thoracic surgery (n = 49). Healthy individuals (n = 46) represented the controls. Serum ACE2 activity was increased in hypertensive subjects (132%) and substantially elevated in end-stage heart failure patients (689%) and showed a strong negative correlation with the left ventricular ejection fraction. Serum ACE2 activity was higher in male (147%), overweight (122%), obese (126%) and elderly (115%) hypertensive patients. Primary lung cancer resulted in higher circulating ACE2 activity, without affecting ACE2 levels in the surrounding lung tissue. Male sex resulted in elevated serum ACE2 activities in patients with heart transplantation or thoracic surgery (146% and 150%, respectively). Left ventricular (tissular) ACE2 activity was unaffected by sex and was lower in overweight (67%), obese (62%) and older (73%) patients with end-stage heart failure. There was no correlation between serum and tissular (left ventricular or lung) ACE2 activities. Neither serum nor tissue (left ventricle or lung) ACE2 levels were affected by RAS inhibitory medications. Abandoning of ACEi treatment (non-compliance) resulted in elevated blood pressure without effects on circulating ACE2 activities. ACE2 levels associate with the severity of cardiovascular diseases, suggestive for a role of ACE2 in the pathomechanisms of cardiovascular diseases and providing a potential explanation for the higher mortality of COVID-19 among cardiovascular patients. Abandoning RAS inhibitory medication worsens the cardiovascular status without affecting circulating or tissue ACE2 levels.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Female , Humans , Male , Renin-Angiotensin System , Stroke Volume , Ventricular Function, Left
2.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359878

ABSTRACT

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman's p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman's Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Aged , Female , Humans , Lung/metabolism , Male , Middle Aged , Myocardium/metabolism , Peptidyl-Dipeptidase A/analysis , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Protein Processing, Post-Translational
3.
Basic Res Cardiol ; 116(1): 24, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33844095

ABSTRACT

Omecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure-volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600-1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600-1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure-volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.


Subject(s)
Action Potentials/drug effects , Arrhythmias, Cardiac/chemically induced , Cardiotonic Agents/toxicity , Hypotension/chemically induced , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Urea/analogs & derivatives , Ventricular Dysfunction, Left/chemically induced , Ventricular Function, Left/drug effects , Adult , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Calcium Signaling/drug effects , Diastole , Dogs , Dose-Response Relationship, Drug , Female , Heart Rate/drug effects , Humans , Hypotension/metabolism , Hypotension/physiopathology , Kinetics , Male , Myocytes, Cardiac/metabolism , Rats, Inbred WKY , Systole , Urea/toxicity , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
4.
Geroscience ; 43(1): 19-29, 2021 02.
Article in English | MEDLINE | ID: mdl-33469835

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a high mortality in elderly patients with pre-existing cardiovascular diseases. The cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the angiotensin-converting enzyme 2 (ACE2), thereby implicating a link between cardiovascular diseases and SARS-CoV-2 susceptibility. Aortic stenosis (AS) represents a chronic inflammatory state with severe cardiovascular complications in the elderly, a prime condition for COVID-19 mortality. The circulating ACE2 levels were measured in 111 patients with severe AS and compared to patients with hypertension and healthy individuals. About 4 times higher circulating ACE2 activity was found in patients with severe AS than in hypertensives or healthy individuals (88.3 ± 61.6., n = 111, 20.6 ± 13.4, n = 540, and 16.1 ± 7.4 mU/L, n = 46, respectively). Patients with severe AS were older than patients with hypertension (80 ± 6 years vs. 60 ± 15 years, P < 0.05). Serum ACE2 activity correlated negatively with the left ventricular ejection fraction, aortic root area, TAPSE, and positively with the right ventricular systolic pressure, cardiac diameters in patients with AS. In contrast, circulating ACE2 activity was independent of the blood pressure, peak flow velocity at the aortic root, kidney function (GFR), and inflammatory state (CRP). We found no effect of RAAS inhibitory drugs on the serum ACE2 activity in this group of patients. Our results illustrate circulating ACE2 as a potential interface between chronic inflammation, cardiovascular disease, and COVID-19 susceptibility. Elderly patients with AS have markedly elevated ACE2 levels together with altered left and right ventricular functions, which may pose higher risks during COVID-19. Our clinical data do not support a role for RAAS inhibitors in regulating circulating ACE2 levels.


Subject(s)
Aortic Valve Stenosis , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Humans , Middle Aged , Peptidyl-Dipeptidase A , Renin-Angiotensin System , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
5.
J Transl Med ; 18(1): 470, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298102

ABSTRACT

BACKGROUND: Cardiomyopathy is a common side effect of doxorubicin (DOX) chemotherapy. Despite intensive research efforts in the field, there is still no evidence available for routine cardioprotective prophylaxis to prevent cardiotoxicity in the majority of oncological patients at low risk of cardiovascular disease. We have recently demonstrated the advantages of a prophylactic, combined heart failure therapy in an experimental model of DOX-induced cardiomyopathy. In the current work, we focus on individually applied prophylactic medications studied in the same translational environment to clarify their distinct roles in the prevention of DOX cardiotoxicity. METHODS: Twelve-week-old male Wistar rats were divided into 5 subgroups. Prophylactic ß-blocker (BB, bisoprolol), angiotensin-converting enzyme inhibitor (ACEI, perindopril) or aldosterone antagonist (AA, eplerenone) treatments were applied 1 week before DOX administration, then 6 cycles of intravenous DOX chemotherapy were administered. Rats receiving only intravenous DOX or saline served as positive and negative controls. Blood pressure, heart rate, body weight, and echocardiographic parameters were monitored in vivo. Two months after the last DOX administration, the animals were sacrificed, and their heart and serum samples were frozen in liquid nitrogen for histological, mechanical, and biochemical measurements. RESULTS: All prophylactic treatments increased the survival of DOX-receiving animals. The lowest mortality rates were seen in the BB and ACEI groups. The left ventricular ejection fraction was only preserved in the BB group. The DOX-induced increase in the isovolumetric relaxation time could not be prevented by any prophylactic treatment. A decreased number of apoptotic nuclei and a preserved myocardial ultrastructure were found in all groups receiving prophylactic cardioprotection, while the DOX-induced fibrotic remodelling and the increase in caspase-3 levels could only be substantially prevented by the BB and ACEI treatments. CONCLUSION: Primary prophylaxis with cardioprotective agents like BB or ACEI has a key role in the prevention of DOX-induced cardiotoxicity in healthy rats. Future human studies are necessary to implement this finding in the clinical management of oncological patients free of cardiovascular risk factors.


Subject(s)
Cardiomyopathies , Pharmaceutical Preparations , Animals , Doxorubicin/adverse effects , Humans , Male , Rats , Rats, Wistar , Stroke Volume , Ventricular Function, Left
6.
ESC Heart Fail ; 7(5): 2113-2122, 2020 10.
Article in English | MEDLINE | ID: mdl-32639674

ABSTRACT

AIMS: Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS: Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS: Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.


Subject(s)
Myocardial Infarction , Tenascin , Angiotensins , Animals , Dilatation , Extracellular Matrix , Mice , Mice, Knockout , Myocardial Infarction/complications , Tenascin/genetics , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...