Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 27(2): 108816, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38323011

ABSTRACT

Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesized that attentional and contextual signals interact in V1 in a manner that primarily benefits the representation of natural stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity from population responses evoked by natural scenes, but not by synthetic stimuli lacking higher-order statistical regularities. Population analysis revealed that neuronal responses converged to a low-dimensional subspace only for natural stimuli. Critically, we determined that the attentional enhancement in stimulus decodability was captured by the natural-scene subspace, indicating an alignment between the attentional and natural stimulus variance. These results suggest that attentional and contextual signals interact in V1 in a manner optimized for natural vision.

2.
Curr Opin Neurobiol ; 58: 209-217, 2019 10.
Article in English | MEDLINE | ID: mdl-31593872

Subject(s)
Neurons , Visual Perception
3.
Proc Natl Acad Sci U S A ; 116(7): 2723-2732, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30692266

ABSTRACT

Spike count correlations (SCCs) are ubiquitous in sensory cortices, are characterized by rich structure, and arise from structured internal dynamics. However, most theories of visual perception treat contributions of neurons to the representation of stimuli independently and focus on mean responses. Here, we argue that, in a functional model of visual perception, featuring probabilistic inference over a hierarchy of features, inferences about high-level features modulate inferences about low-level features ultimately introducing structured internal dynamics and patterns in SCCs. Specifically, high-level inferences for complex stimuli establish the local context in which neurons in the primary visual cortex (V1) interpret stimuli. Since the local context differentially affects multiple neurons, this conjecture predicts specific modulations in the fine structure of SCCs as stimulus identity and, more importantly, stimulus complexity varies. We designed experiments with natural and synthetic stimuli to measure the fine structure of SCCs in V1 of awake behaving macaques and assessed their dependence on stimulus identity and stimulus statistics. We show that the fine structure of SCCs is specific to the identity of natural stimuli and changes in SCCs are independent of changes in response mean. Critically, we demonstrate that stimulus specificity of SCCs in V1 can be directly manipulated by altering the amount of high-order structure in synthetic stimuli. Finally, we show that simple phenomenological models of V1 activity cannot account for the observed SCC patterns and conclude that the stimulus dependence of SCCs is a natural consequence of structured internal dynamics in a hierarchical probabilistic model of natural images.


Subject(s)
Action Potentials , Visual Cortex/physiology , Animals , Female , Macaca mulatta , Male , Neurons/physiology , Photic Stimulation , Visual Cortex/cytology , Visual Perception
4.
J Neurophysiol ; 118(1): 29-46, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28298305

ABSTRACT

Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations.NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity.


Subject(s)
Membrane Potentials , Models, Neurological , Visual Cortex/physiology , Animals , Haplorhini , Neurons/physiology , Visual Cortex/cytology
5.
Subcell Biochem ; 76: 185-205, 2015.
Article in English | MEDLINE | ID: mdl-26219713

ABSTRACT

Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.


Subject(s)
Alkaline Phosphatase/metabolism , Gene Regulatory Networks , Neurons/metabolism , Protein Interaction Maps , Signal Transduction/physiology , Alkaline Phosphatase/physiology , Animals , Cluster Analysis , Databases, Chemical , Gene Regulatory Networks/physiology , Humans , Neurons/enzymology , Protein Interaction Maps/physiology , Synaptic Transmission/genetics
6.
Neuroimage ; 58(3): 870-7, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21726653

ABSTRACT

Schizophrenia is shown to be associated with impaired interactions in functional macro-networks of the brain. The focus of our study was if there is an impairment of cognitive control of learning during schizophrenia. To investigate this question, we collected fMRI data from a group of stable schizophrenia patients and controls performing an object-location associative learning task in which the learning performance of the patient group was significantly worse. We applied Dynamic Causal Modeling to analyze the fMRI data. A set of causal models of BOLD signal generation was defined to evaluate connections between five regions material to the task (Primary Visual Cortex, Superior Parietal and Inferior Temporal Cortex, Hippocampus and Dorsal Prefrontal Cortex). Bayesian model selection was used to investigate hypotheses on differences in model architecture across groups, and indicated fundamental differences in model architecture in patients compared to controls. Models lacking connections related to cognitive control were more probable in the patient group. Hypotheses on differences in effective connectivity between groups were tested by comparing estimates of neural coupling parameters in winning model structures. This analysis indicated reduced fronto-hippocampal and hippocampo-inferior temporal coupling in patients, and reduced excitatory modulation of these pathways by learning. These findings may account for the documented reductions in learning performance of schizophrenia patients.


Subject(s)
Brain/physiopathology , Image Interpretation, Computer-Assisted/methods , Models, Neurological , Neural Pathways/physiopathology , Schizophrenia/physiopathology , Bayes Theorem , Humans , Learning/physiology , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL