Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30297466

ABSTRACT

Southeast Asia, in particular Indonesia, has periodically struggled with intense fire events. These events convert substantial amounts of carbon stored as peat to atmospheric carbon dioxide (CO2) and significantly affect atmospheric composition on a regional to global scale. During the recent 2015 El Niño event, peat fires led to strong enhancements of carbon monoxide (CO), an air pollutant and well-known tracer for biomass burning. These enhancements were clearly observed from space by the Infrared Atmospheric Sounding Interferometer (IASI) and the Measurements of Pollution in the Troposphere (MOPITT) instruments. We use these satellite observations to estimate CO fire emissions within an inverse modelling framework. We find that the derived CO emissions for each sub-region of Indonesia and Papua are substantially different from emission inventories, highlighting uncertainties in bottom-up estimates. CO fire emissions based on either MOPITT or IASI have a similar spatial pattern and evolution in time, and a 10% uncertainty based on a set of sensitivity tests we performed. Thus, CO satellite data have a high potential to complement existing operational fire emission estimates based on satellite observations of fire counts, fire radiative power and burned area, in better constraining fire occurrence and the associated conversion of peat carbon to atmospheric CO2 A total carbon release to the atmosphere of 0.35-0.60 Pg C can be estimated based on our results.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Subject(s)
Air Pollutants/analysis , Carbon Monoxide/analysis , Fires , El Nino-Southern Oscillation , Indonesia , Remote Sensing Technology
2.
Sci Rep ; 7: 45759, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393869

ABSTRACT

Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ∼6-9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.

3.
Environ Sci Technol ; 49(1): 277-83, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25412274

ABSTRACT

Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.


Subject(s)
Geologic Sediments , Iron/metabolism , Methane/metabolism , Water/chemistry , Carbon Cycle , Ferric Compounds , Methane/chemistry , Oxidation-Reduction , Oxides , Salinity , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...