Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Hum Behav ; 8(1): 43-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904022

ABSTRACT

The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.


Subject(s)
Arousal , Pupil , Humans , Pupil/physiology , Arousal/physiology , Locus Coeruleus/physiology , Cognition/physiology , Biofeedback, Psychology
2.
J Neurophysiol ; 130(2): 458-473, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37465880

ABSTRACT

Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS.NEW & NOTEWORTHY Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS)triangle and tACSsine targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.


Subject(s)
Transcranial Direct Current Stimulation , Visual Cortex , Humans , Visual Perception/physiology , Contrast Sensitivity , Noise , Visual Cortex/physiology
3.
eNeuro ; 10(6)2023 Jun.
Article in English | MEDLINE | ID: mdl-37263793

ABSTRACT

Transcranial random noise stimulation (tRNS) has been shown to significantly improve visual perception. Previous studies demonstrated that tRNS delivered over cortical areas acutely enhances visual contrast detection of weak stimuli. However, it is currently unknown whether tRNS-induced signal enhancement could be achieved within different neural substrates along the retino-cortical pathway. In three experimental sessions, we tested whether tRNS applied to the primary visual cortex (V1) and/or to the retina improves visual contrast detection. We first measured visual contrast detection threshold (VCT; N = 24, 16 females) during tRNS delivery separately over V1 and over the retina, determined the optimal tRNS intensities for each individual (ind-tRNS), and retested the effects of ind-tRNS within the sessions. We further investigated whether we could reproduce the ind-tRNS-induced modulation on a different session (N = 19, 14 females). Finally, we tested whether the simultaneous application of ind-tRNS to the retina and V1 causes additive effects. Moreover, we present detailed simulations of the induced electric field across the visual system. We found that at the group level tRNS decreases VCT compared with baseline when delivered to the V1. Beneficial effects of ind-tRNS could be replicated when retested within the same experimental session but not when retested in a separate session. Applying tRNS to the retina did not cause a systematic reduction of VCT, regardless of whether the individually optimized intensity was considered or not. We also did not observe consistent additive effects of V1 and retina stimulation. Our findings demonstrate significant tRNS-induced modulation of visual contrast processing in V1 but not in the retina.


Subject(s)
Contrast Sensitivity , Transcranial Direct Current Stimulation , Female , Humans , Visual Perception/physiology
4.
Nat Protoc ; 17(3): 596-617, 2022 03.
Article in English | MEDLINE | ID: mdl-35121855

ABSTRACT

Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.


Subject(s)
Checklist , Transcranial Direct Current Stimulation , Consensus , Magnetic Resonance Imaging , Reproducibility of Results
5.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-34921057

ABSTRACT

Noise introduced in the human nervous system from cellular to systems levels can have a major impact on signal processing. Using transcranial stimulation, electrical noise can be added to cortical circuits to modulate neuronal activity and enhance function in the healthy brain and in neurologic patients. Transcranial random noise stimulation (tRNS) is a promising technique that is less well understood than other non-invasive neuromodulatory methods. The aim of the present scoping review is to collate published evidence on the effects of electrical noise at the cellular, systems, and behavioral levels, and discuss how this emerging method might be harnessed to augment perceptual and motor functioning of the human nervous system. Online databases were used to identify papers published in 2008-2021 using tRNS in humans, from which we identified 70 publications focusing on sensory and motor function. Additionally, we interpret the existing evidence by referring to articles investigating the effects of noise stimulation in animal and subcellular models. We review physiological and behavioral findings of tRNS-induced offline after-effects and acute online benefits which manifest immediately when tRNS is applied to sensory or motor cortices. We link these results to evidence showing that activity of voltage-gated sodium ion channels might be an important cellular substrate for mediating these tRNS effects. We argue that tRNS might make neural signal transmission and processing within neuronal populations more efficient, which could contribute to both (1) offline after-effects in the form of a prolonged increase in cortical excitability and (2) acute online noise benefits when computations rely on weak inputs.


Subject(s)
Cortical Excitability , Motor Cortex , Transcranial Direct Current Stimulation , Humans , Noise
6.
Neuroimage ; 242: 118463, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34384910

ABSTRACT

Neurofeedback (NF) in combination with motor imagery (MI) can be used for training individuals to volitionally modulate sensorimotor activity without producing overt movements. However, until now, NF methods were of limited utility for mentally training specific hand and finger actions. Here we employed a novel transcranial magnetic stimulation (TMS) based protocol to probe and detect MI-induced motor activity patterns in the primary motor cortex (M1) with the aim to reinforce selective facilitation of single finger representations. We showed that TMS-NF training but not MI training with uninformative feedback enabled participants to selectively upregulate corticomotor excitability of one finger, while simultaneously downregulating excitability of other finger representations within the same hand. Successful finger individuation during MI was accompanied by strong desynchronization of sensorimotor brain rhythms, particularly in the beta band, as measured by electroencephalography. Additionally, informative TMS-NF promoted more dissociable EEG activation patterns underlying single finger MI, when compared to MI of the control group where no such feedback was provided. Our findings suggest that selective TMS-NF is a new approach for acquiring the ability of finger individuation even if no overt movements are performed. This might offer new treatment modality for rehabilitation after stroke or spinal cord injury.


Subject(s)
Imagination/physiology , Motor Activity/physiology , Neurofeedback/methods , Transcranial Magnetic Stimulation/methods , Adult , Brain-Computer Interfaces , Electroencephalography , Electromyography , Evoked Potentials, Motor , Female , Fingers , Humans , Individuation , Male , Motor Cortex/physiology , Movement , Muscle, Skeletal/physiology , Young Adult
7.
J Neurosci ; 41(17): 3842-3853, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33737456

ABSTRACT

Transcranial random noise stimulation (tRNS) over cortical areas has been shown to acutely improve performance in sensory detection tasks. One explanation for this behavioral effect is stochastic resonance (SR), a mechanism that explains how signal processing in nonlinear systems can benefit from added noise. While acute noise benefits of electrical RNS have been demonstrated at the behavioral level as well as in in vitro preparations of neural tissue, it is currently largely unknown whether similar effects can be shown at the neural population level using neurophysiological readouts of human cortex. Here, we hypothesized that acute tRNS will increase the responsiveness of primary motor cortex (M1) when probed with transcranial magnetic stimulation (TMS). Neural responsiveness was operationalized via the well-known concept of the resting motor threshold (RMT). We showed that tRNS acutely decreases RMT. This effect was small, but it was consistently replicated across four experiments including different cohorts (total N = 81, 46 females, 35 males), two tRNS electrode montages, and different control conditions. Our experiments provide critical neurophysiological evidence that tRNS can acutely generate noise benefits by enhancing the neural population response of human M1.SIGNIFICANCE STATEMENT A hallmark feature of stochastic resonance (SR) is that signal processing can benefit from added noise. This has mainly been demonstrated at the single-cell level in vitro where the neural response to weak input signals can be enhanced by simultaneously applying random noise. Our finding that transcranial random noise stimulation (tRNS) acutely increases the excitability of corticomotor circuits extends the principle of noise benefits to the neural population level in human cortex. Our finding is in line with the notion that tRNS might affect cortical processing via the SR phenomenon. It suggests that enhancing the response of cortical populations to an external stimulus might be one neurophysiological mechanism mediating performance improvements when tRNS is applied to sensory cortex during perception tasks.


Subject(s)
Acoustic Stimulation , Efferent Pathways/physiology , Noise , Sensory Thresholds/physiology , Adolescent , Adult , Algorithms , Cerebral Cortex/physiology , Electromyography , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged , Motor Cortex/physiology , Sensation , Stochastic Processes , Transcranial Magnetic Stimulation , Young Adult
8.
HRB Open Res ; 3: 34, 2020.
Article in English | MEDLINE | ID: mdl-33283152

ABSTRACT

The occurrence of neuronal spikes recorded directly from sensory cortex is highly irregular within and between presentations of an invariant stimulus. The traditional solution has been to average responses across many trials. However, with this approach, response variability is downplayed as noise, so it is assumed that statistically controlling it will reveal the brain's true response to a stimulus. A mounting body of evidence suggests that this approach is inadequate. For example, experiments show that response variability itself varies as a function of stimulus dimensions like contrast and state dimensions like attention. In other words, response variability has structure, is therefore potentially informative and should be incorporated into models which try to explain neural encoding. In this article we provide commentary on a recently published study by Coen-Cagli and Solomon that incorporates spike variability in a quantitative model, by explaining it as a function of divisive normalization. We consider the potential role of neural oscillations in this process as a potential bridge between the current microscale findings and response variability at the mesoscale/macroscale level.

9.
Elife ; 82019 09 16.
Article in English | MEDLINE | ID: mdl-31524600

ABSTRACT

Motor fatigability emerges when demanding tasks are executed over an extended period of time. Here, we used repetitive low-force movements that cause a gradual reduction in movement speed (or 'motor slowing') to study the central component of fatigability in healthy adults. We show that motor slowing is associated with a gradual increase of net excitability in the motor network and, specifically, in primary motor cortex (M1), which results from overall disinhibition. Importantly, we link performance decrements to a breakdown of surround inhibition in M1, which is associated with high coactivation of antagonistic muscle groups. This is consistent with the model that a loss of inhibitory control might broaden the tuning of population vectors such that movement patterns become more variable, ill-timed and effortful. We propose that the release of inhibition in M1 is an important mechanism underpinning motor fatigability and, potentially, also pathological fatigue as frequently observed in patients with brain disorders.


Subject(s)
Fatigue , Hand/physiology , Movement , Adult , Electroencephalography , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Motor Cortex/physiology , Young Adult
10.
J Neurosci ; 37(18): 4766-4777, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28385876

ABSTRACT

Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity.SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to resting state networks derived from rs-fMRI. Here we take a novel approach to address this problem and establish a causal link between the power fluctuations of electrophysiological signals and rs-fMRI via a new neuromodulation paradigm, which exploits these power synchronization mechanisms. These novel mechanistic insights bridge different scientific domains and are of broad interest to researchers in the fields of Medical Imaging, Neuroscience, Physiology, and Psychology.


Subject(s)
Cortical Synchronization/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Rest/physiology , Sensorimotor Cortex/physiopathology , Transcranial Direct Current Stimulation/methods , Brain Mapping/methods , Female , Humans , Neural Pathways/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...