Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 12(1): 50-65, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27897427

ABSTRACT

The mineralocorticoid receptor (MR) is a nuclear hormone receptor involved in the regulation of body fluid and electrolyte homeostasis. In this study we explore selectivity triggers for a series of nonsteroidal MR antagonists to improve selectivity over other members of the oxosteroid receptor family. A biaryl sulfonamide compound was identified in a high-throughput screening (HTS) campaign. The compound bound to MR with pKi =6.6, but displayed poor selectivity over the glucocorticoid receptor (GR) and the progesterone receptor (PR). Following X-ray crystallography of MR in complex with the HTS hit, a compound library was designed that explored an induced-fit hypothesis that required movement of the Met852 side chain. An improvement in MR selectivity of 11- to 79-fold over PR and 23- to 234-fold over GR was obtained. Given the U-shaped binding conformation, macrocyclizations were explored, yielding a macrocycle that bound to MR with pKi =7.3. Two protein-ligand X-ray structures were determined, confirming the hypothesized binding mode for the designed compounds.


Subject(s)
Drug Design , Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Mineralocorticoid Receptor Antagonists/chemical synthesis , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Substrate Specificity
2.
ChemMedChem ; 11(5): 497-508, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26845235

ABSTRACT

Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Catalytic Domain , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , High-Throughput Screening Assays , Models, Molecular , Molecular Structure , Solubility
3.
Structure ; 23(12): 2280-2290, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26602186

ABSTRACT

Steroid receptor drugs have been available for more than half a century, but details of the ligand binding mechanism have remained elusive. We solved X-ray structures of the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at the helix 6-7 region that extends the ligand binding pocket toward the receptor surface. Since none of the endogenous ligands exploit this region, we hypothesized that it constitutes an integral part of the binding event. Extensive all-atom unbiased ligand exit and entrance simulations corroborate a ligand binding pathway that gives the observed structural plasticity a key functional role. Kinetic measurements reveal that the receptor residence time correlates with structural rearrangements observed in both structures and simulations. Ultimately, our findings reveal why nature has conserved the capacity to open up this region, and highlight how differences in the details of the ligand entry process result in differential evolutionary constraints across the steroid receptors.


Subject(s)
Conserved Sequence , Receptors, Glucocorticoid/chemistry , Receptors, Mineralocorticoid/chemistry , Amino Acid Sequence , Binding Sites , Evolution, Molecular , Humans , Molecular Sequence Data , Protein Binding , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism
4.
Bioorg Med Chem Lett ; 24(11): 2571-7, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24755427

ABSTRACT

We report the discovery of highly potent and selective non-steroidal glucocorticoid receptor modulators with PK properties suitable for inhalation. A high throughput screen of the AstraZeneca compound collection identified sulfonamide 3 as a potent non-steroidal glucocorticoid receptor ligand. Further optimization of this lead generated indazoles 30 and 48 that were progressed to characterization in in vivo models. X-ray crystallography was used to gain further insight into the binding mode of selected ligands.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Discovery , Receptors, Glucocorticoid/antagonists & inhibitors , Sulfonamides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
5.
Structure ; 21(2): 306-13, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23333428

ABSTRACT

The FAM3 superfamily is predicted to contain classical four-helix bundle cytokines, featuring a typical up-up-down-down fold. Two members of FAM3 have been extensively studied. FAM3B PANDER has been shown to regulate glucose homeostasis and ß cell function, whereas the homologous FAM3C ILEI has been shown to be involved in epithelial-mesenchymal transition and cancer. Here, we present a three-dimensional structure of a FAM3 protein, murine PANDER. Contrary to previous suggestions, PANDER exhibits a globular ß-ß-α fold. The structure is composed of two antiparallel ß sheets lined by three short helices packing to form a highly conserved water-filled cavity. The fold shares no relation to the predicted four-helix cytokines but is conserved throughout the FAM3 superfamily. The available biological data and the unexpected new fold indicate that FAM3 PANDER and ILEI could represent a new structural class of signaling molecules, with a different mode of action compared to the traditional four-helix bundle cytokines.


Subject(s)
Cytokines/chemistry , Neoplasm Proteins/chemistry , Amino Acid Sequence , Animals , Conserved Sequence , Crystallography, X-Ray , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Surface Properties
6.
Nucleic Acids Res ; 39(21): 9238-49, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21840902

ABSTRACT

Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.


Subject(s)
DNA Helicases/metabolism , DNA Replication , DNA, Circular/metabolism , DNA/biosynthesis , Mitochondrial Proteins/metabolism , DNA Polymerase gamma , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Mitochondria/enzymology , Nucleotides/metabolism , Temperature , Templates, Genetic
7.
Hum Mol Genet ; 20(6): 1212-23, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21228000

ABSTRACT

A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.


Subject(s)
DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Mutation, Missense , Ophthalmoplegia, Chronic Progressive External/enzymology , Cell Line , DNA Polymerase gamma , DNA Replication , DNA, Mitochondrial/genetics , Humans , Ophthalmoplegia, Chronic Progressive External/genetics
8.
Protein Expr Purif ; 69(2): 226-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19747545

ABSTRACT

BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).


Subject(s)
DNA Restriction Enzymes/metabolism , DNA, Single-Stranded/metabolism , Amino Acid Sequence , Bacteriophage T7/genetics , Base Sequence , Catalytic Domain , Cloning, Molecular , DNA Breaks, Single-Stranded , DNA Restriction Enzymes/genetics , DNA, Single-Stranded/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Sequence Homology, Amino Acid
9.
Mol Cell ; 26(5): 717-29, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17560376

ABSTRACT

Mediator, a central coregulator of transcription, has been identified as a large protein complex in eukaryotes ranging from yeast to man. It is therefore remarkable that Mediator has not yet been identified within the plant kingdom. Here we identify Mediator in a plant, Arabidopsis thaliana. The plant Mediator subunits typically show very low homology to other species, but our biochemical purification identifies 21 conserved and six A. thaliana-specific Mediator subunits. Most notably, we identify the A. thaliana proteins STRUWWELPETER (SWP) and PHYTOCHROME AND FLOWERING TIME 1 (PFT1) as the Med14 and Med25 subunits, respectively. These findings show that specific plant Mediator subunits are linked to the regulation of specialized processes such as the control of cell proliferation and the regulation of flowering time in response to light quality. The identification of the plant Mediator will provide new tools and insights into the regulation of transcription in plants.


Subject(s)
Arabidopsis Proteins/isolation & purification , Arabidopsis/metabolism , Nuclear Proteins/isolation & purification , Trans-Activators/isolation & purification , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , DNA-Binding Proteins , Genes, Plant , Models, Biological , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/isolation & purification , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Subunits , Sequence Homology, Amino Acid , Signal Transduction , Tandem Mass Spectrometry , Trans-Activators/chemistry , Trans-Activators/genetics
10.
J Struct Biol ; 155(3): 445-57, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16723258

ABSTRACT

The transthyretin-related protein (TRP) family comprises proteins predicted to be structurally related to the homotetrameric transport protein transthyretin (TTR). The function of TRPs is not yet fully established, but recent data suggest that they are involved in purine catabolism. We have determined the three-dimensional structure of the Escherichia coli TRP in two crystal forms; one at 1.65 A resolution in the presence of zinc, and the other at 2.1 A resolution in the presence of zinc and bromide. The structures revealed five zinc-ion-binding sites per monomer. Of these, the zinc ions bound at sites I and II are coordinated in tetrahedral geometries to the side chains of residues His9, His96, His98, Ser114, and three water molecules at the putative ligand-binding site. Of these four residues, His9, His98, and Ser114 are conserved. His9 and His98 bind the central zinc (site I) together with two water molecules. The side chain of His98 also binds to the zinc ion at site II. Bromide ions bind at site I only, replacing one of the water molecules coordinated to the zinc ion. The C-terminal four amino acid sequence motif Y-[RK]-G-[ST] constitutes the signature sequence of the TRP family. Two Tyr111 residues form direct hydrogen bonds to each other over the tetramer interface at the area, which in TTR constitutes the rear part of its thyroxine-binding channel. The putative substrate/ligand-binding channel of TRP is consequently shallower and broader than its counterpart in TTR.


Subject(s)
Escherichia coli Proteins/chemistry , Prealbumin/chemistry , Amino Acid Sequence , Binding Sites , Bromides/metabolism , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Multigene Family , Protein Structure, Secondary , Sequence Homology, Amino Acid , Zinc Compounds/metabolism
11.
J Immunol ; 173(3): 1868-75, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15265919

ABSTRACT

Mast cell tryptase is a tetrameric serine protease that is stored in complex with negatively charged heparin proteoglycans in the secretory granule. Tryptase has potent proinflammatory properties and has been implicated in diverse pathological conditions such as asthma and fibrosis. Previous studies have shown that tryptase binds tightly to heparin, and that heparin is required in the assembly of the tryptase tetramer as well as for stabilization of the active tetramer. Because the interaction of tryptase with heparin is optimal at acidic pH, we investigated in this study whether His residues are of importance for the heparin binding, tetramerization, and activation of the tryptase mouse mast cell protease 6. Molecular modeling of mouse mast cell protease 6 identified four His residues, H35, H106, H108, and H238, that are conserved among pH-dependent tryptases and are exposed on the molecular surface, and these four His residues were mutated to Ala. In addition, combinations of different mutations were prepared. Generally, the single His-Ala mutations did not cause any major defects in heparin binding, activation, or tetramerization, although some effect of the H106A mutation was observed. However, when several mutations were combined, large defects in all of these parameters were observed. Of the mutants, the triple mutant H106A/H108A/H238A was the most affected with an almost complete inability to bind to heparin and to form active tryptase tetramers. Taken together, this study shows that surface-exposed histidines mediate the interaction of mast cell tryptase with heparin and are of critical importance in the formation of active tryptase tetramers.


Subject(s)
Heparin/metabolism , Histidine/physiology , Mast Cells/enzymology , Serine Endopeptidases/chemistry , Amino Acid Sequence , Animals , Biopolymers , Cell Line , Consensus Sequence , Enzyme Activation , Humans , Infant, Newborn , Kidney , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Species Specificity , Tryptases
12.
J Mol Biol ; 322(2): 259-72, 2002 Sep 13.
Article in English | MEDLINE | ID: mdl-12217689

ABSTRACT

The evolutionarily conserved Runt homology domain is characteristic of the RUNX family of heterodimeric eukaryotic transcription factors, including RUNX1, RUNX2 and RUNX3. The genes for RUNX1, also termed acute myeloid leukemia protein 1, AML1, and its dimerization partner core-binding factor beta, CBFbeta, are essential for hematopoietic development and are together the most common targets for gene rearrangements in acute human leukemias. Here, we describe the crystal structure of the uncomplexed RUNX1 Runt domain at 1.25A resolution and compare its conformation to previously published structures in complex with DNA, CBFbeta or both. We find that complex formation induces significant structural rearrangements in this immunoglobulin (Ig)-like DNA-binding domain. Most pronounced is the movement of loop L11, which changes from a closed conformation in the free Runt structure to an open conformation in the CBFbeta-bound and DNA-bound forms. This transition, which we refer to as the S-switch, and accompanying structural movements that affect other parts of the Runt domain are crucial for sustained DNA binding. The closed to open transition can be induced by CBFbeta alone; suggesting that one role of CBFbeta is to trigger the S-switch and to stabilize the Runt domain in a conformation enhanced for DNA binding.A feature of the Runt domain hitherto unobserved in any Ig-like DNA-binding domain is the presence of two specifically bound chloride ions. One chloride ion is coordinated by amino acid residues that make direct DNA contact. In a series of electrophoretic mobility-shift analyses, we demonstrate a chloride ion concentration-dependent stimulation of the DNA-binding activity of Runt in the physiological range. A comparable DNA-binding stimulation was observed for negatively charged amino acid residues. This suggests a regulatory mechanism of RUNX proteins through acidic amino acid residues provided by activation domains during cooperative interaction with other transcription factors.


Subject(s)
Chlorides/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Proto-Oncogene Proteins , Transcription Factors/chemistry , Transcription Factors/metabolism , Acute Disease , Amino Acid Sequence , Animals , Core Binding Factor Alpha 1 Subunit , Core Binding Factor Alpha 2 Subunit , Crystallography, X-Ray , DNA/genetics , DNA-Binding Proteins/genetics , Humans , Leukemia, Myeloid/genetics , Models, Molecular , Molecular Sequence Data , Movement , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Static Electricity , Structure-Activity Relationship , Transcription Factor AP-2 , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...