Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 11(4): 1700-3, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21410240

ABSTRACT

Using a tunable optical microresonator with subwavelength spacing, we demonstrate controlled modulation of the radiative transition rate of a single molecule, which is measured by monitoring its fluorescence lifetime. Variation of the cavity length changes the local mode structure of the electromagnetic field, which modifies the radiative coupling of an emitting molecule to that field. By comparing the experimental data with a theoretical model, we extract both the pure radiative transition rate as well as the quantum yield of individual molecules. We observe a broad scattering of quantum yield values from molecule to molecule, which reflects the strong variation of the local interaction of the observed molecules with their host environment.


Subject(s)
Luminescent Measurements/instrumentation , Molecular Probe Techniques/instrumentation , Optical Devices , Transducers , Equipment Design , Equipment Failure Analysis
2.
Nano Lett ; 11(3): 1131-5, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21271740

ABSTRACT

We study the dimensionality of the excitation transition dipole moment for single CdSe/ZnS core-shell nanocrystals using azimuthally and radially polarized laser modes. The comparison of measured and simulated single nanocrystal excitation patterns shows that single CdSe/ZnS quantum dots possess a spherically degenerated excitation transition dipole. We show that the dimensionality of the excitation transition dipole moment distribution is the same for all individual CdSe/ZnS nanocrystals, disregarding the difference in core size and irrespective of variations in the local environment. In contrast to the emission transition dipole moment, which is oriented in one plane, the excitation transition dipole moment of a single CdSe/ZnS quantum dots possesses an isotropy in three dimensions.

3.
Phys Chem Chem Phys ; 13(5): 1722-33, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21240406

ABSTRACT

Tautomerism process of single fluorescent molecules was studied by means of confocal microscopy in combination with azimuthally or radially polarized laser beams. During a tautomerism process the transition dipole moment (TDM) of a molecule changes its orientation which can be visualized by the fluorescence excitation image of the molecule. We present experimental and theoretical studies of two porphyrazine-type molecules and one type of porphyrin molecule: a symmetrically substituted metal-free phthalocyanine and porphyrin, and nonsymmetrically substituted porphyrazine. In the case of phthalocyanine the fluorescence excitation patterns show that the angle between the transition dipole moments of the two tautomeric forms is near 90°, in agreement with quantum chemical calculations. For porphyrazine we find that the orientation change of the TDM is less than 60° or larger than 120°, as theoretically predicted. Most of the porphyrin molecules show no photoinduced tautomerization, while for 7% of the total number of investigated molecules we observed excitation patterns of two different trans forms of the same single molecule. We demonstrate for the first time that a molecule, undergoing a tautomerism process stays in one tautomeric trans conformation during a time comparable with the acquisition time of one excitation pattern. This allowed us to visualize the existence of each of the two trans forms of one single porphyrin molecule, as well as the sudden switching between these tautomers.

4.
Nano Lett ; 10(2): 504-8, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20063862

ABSTRACT

A tightly focused radially polarized laser beam forms an unusual bimodal field distribution in an optical lambda/2-microresonator. We use a single-molecule dipole to probe the vector properties of this field distribution by tuning the resonator length with nanometer precision. Comparing calculated and experimental excitation patterns provides the three-dimensional orientation of the single-molecule dipole in the microresonator.


Subject(s)
Nanotechnology/methods , Optics and Photonics , Algorithms , Equipment Design , Light , Materials Testing , Nanostructures/chemistry , Silicon Dioxide/chemistry , Spectrometry, Fluorescence/methods
5.
Anal Bioanal Chem ; 396(1): 3-14, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19908031

ABSTRACT

We present a general review of different microresonator structures and how they can be used in future device applications in modern analytical methods by tailoring the optical properties of single quantum emitters. The main emphasis is on the tunable lambda/2-Fabry-Perot-type microresonator which we used to obtain the results presented in this article. By varying the mirror distance the local mode structure of the electromagnetic field is altered and thus the radiative coupling of fluorescent single quantum emitters embedded inside the resonator to that field is changed, too. As a result a modification of the optical properties of these quantum emitters can be observed. We present experimental as well as theoretical results illustrating this effect. Furthermore, the developed resonator can be used to determine the longitudinal position of embedded emitters with an accuracy of lambda/60 by analyzing the excitation patterns of nano-sized fluorescent polymer spheres after excitation with a radially polarized doughnut mode laser beam. Finally, we will apply this resonator to a biological system and demonstrate the modification of Förster resonant energy transfer (FRET) efficiency by inhibiting the excited state energy transfer from the donor to the acceptor chromophore of a single DsRed protein.

SELECTION OF CITATIONS
SEARCH DETAIL
...