Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 11: 593321, 2020.
Article in English | MEDLINE | ID: mdl-33584657

ABSTRACT

Acute graft-versus-host disease (aGvHD) is a severe and often life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). AGvHD is mediated by alloreactive donor T-cells targeting predominantly the gastrointestinal tract, liver, and skin. Recent work in mice and patients undergoing allo-HCT showed that alloreactive T-cells can be identified by the expression of α4ß7 integrin on T-cells even before manifestation of an aGvHD. Here, we investigated whether the detection of a combination of the expression of T-cell surface markers on peripheral blood (PB) CD8+ T-cells would improve the ability to predict aGvHD. To this end, we employed two independent preclinical models of minor histocompatibility antigen mismatched allo-HCT following myeloablative conditioning. Expression profiles of integrins, selectins, chemokine receptors, and activation markers of PB donor T-cells were measured with multiparameter flow cytometry at multiple time points before the onset of clinical aGvHD symptoms. In both allo-HCT models, we demonstrated a significant upregulation of α4ß7 integrin, CD162E, CD162P, and conversely, a downregulation of CD62L on donor T-cells, which could be correlated with the development of aGvHD. Other surface markers, such as CD25, CD69, and CC-chemokine receptors were not found to be predictive markers. Based on these preclinical data from mouse models, we propose a surface marker panel on peripheral blood T-cells after allo-HCT combining α4ß7 integrin with CD62L, CD162E, and CD162P (cutaneous lymphocyte antigens, CLA, in humans) to identify patients at risk for developing aGvHD early after allo-HCT.


Subject(s)
Biomarkers , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Acute Disease , Animals , Antigens, CD/metabolism , Biopsy , Disease Models, Animal , Disease Susceptibility , Female , Graft vs Host Disease/diagnosis , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Prognosis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transplantation, Homologous
2.
PLoS One ; 13(4): e0196238, 2018.
Article in English | MEDLINE | ID: mdl-29684067

ABSTRACT

CRISPR-Cas9 technology is routinely applied for targeted mutagenesis in model organisms and cell lines. Recent studies indicate that the prokaryotic CRISPR-Cas9 system is affected by eukaryotic chromatin structures. Here, we show that the likelihood of successful mutagenesis correlates with transcript levels during early development in zebrafish (Danio rerio) embryos. In an experimental setting, we found that guide RNAs differ in their onset of mutagenesis activity in vivo. Furthermore, some guide RNAs with high in vitro activity possessed poor mutagenesis activity in vivo, suggesting the presence of factors that limit the mutagenesis in vivo. Using open access datasets generated from early developmental stages of the zebrafish, and guide RNAs selected from the CRISPRz database, we provide further evidence for an association between gene expression during early development and the success of CRISPR-Cas9 mutagenesis in zebrafish embryos. In order to further inspect the effect of chromatin on CRISPR-Cas9 mutagenesis, we analysed the relationship of selected chromatin features on CRISPR-Cas9 mutagenesis efficiency using publicly available data from zebrafish embryos. We found a correlation between chromatin openness and the efficiency of CRISPR-Cas9 mutagenesis. These results indicate that CRISPR-Cas9 mutagenesis is influenced by chromatin accessibility in zebrafish embryos.


Subject(s)
Chromatin/chemistry , RNA, Guide, Kinetoplastida/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , CRISPR-Cas Systems , Chromatin/genetics , Databases, Genetic , Embryonic Development , Gene Expression , Gene Expression Regulation, Developmental , Transcriptional Activation , Zebrafish/genetics
3.
J Exp Med ; 213(9): 1881-900, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27526711

ABSTRACT

Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.


Subject(s)
Graft vs Host Disease/prevention & control , Receptors, Tumor Necrosis Factor, Type II/physiology , T-Lymphocytes, Regulatory/immunology , Acute Disease , Animals , Female , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Interleukin-2/pharmacology , Mice , Mice, Inbred Strains , Myeloid-Derived Suppressor Cells/physiology
4.
Front Immunol ; 7: 196, 2016.
Article in English | MEDLINE | ID: mdl-27242801

ABSTRACT

Tuberculosis (TB) is a global health emergency. Up to one-third of the world's population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum - a natural fish pathogen - and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection.

5.
PLoS One ; 10(7): e0134263, 2015.
Article in English | MEDLINE | ID: mdl-26218428

ABSTRACT

Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.


Subject(s)
Embryo, Nonmammalian/abnormalities , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Morpholinos/pharmacology , Oligonucleotides, Antisense/pharmacology , Zebrafish Proteins/antagonists & inhibitors , Zebrafish/embryology , Animals , Apoptosis , Gene Knockdown Techniques , Larva/genetics , Larva/growth & development , Phylogeny , Swimming , Teratogenesis/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
6.
Blood ; 126(4): 437-44, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26012567

ABSTRACT

Inhibition of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) system reduces intestinal cell death and disease development in several models of colitis. In view of the crucial role of TNF and intestinal cell death in graft-versus-host disease (GVHD) and the ability of TWEAK to enhance TNF-induced cell death, we tested here the therapeutic potential of Fn14 blockade on allogeneic hematopoietic cell transplantation (allo-HCT)-induced intestinal GVHD. An Fn14-specific blocking human immunoglobulin G1 antibody variant with compromised antibody-dependent cellular cytotoxicity (ADCC) activity strongly inhibited the severity of murine allo-HCT-induced GVHD. Treatment of the allo-HCT recipients with this monoclonal antibody reduced cell death of gastrointestinal cells but neither affected organ infiltration by donor T cells nor cytokine production. Fn14 blockade also inhibited intestinal cell death in mice challenged with TNF. This suggests that the protective effect of Fn14 blockade in allo-HCT is based on the protection of intestinal cells from TNF-induced apoptosis and not due to immune suppression. Importantly, Fn14 blockade showed no negative effect on graft-versus-leukemia/lymphoma (GVL) activity. Thus, ADCC-defective Fn14-blocking antibodies are not only possible novel GVL effect-sparing therapeutics for the treatment of GVHD but might also be useful for the treatment of other inflammatory bowel diseases where TNF-induced cell death is of relevance.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/therapeutic use , Apoptosis , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/pathology , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Tumor Necrosis Factor Inhibitors , Animals , Antibody-Dependent Cell Cytotoxicity , Blotting, Western , Cells, Cultured , Cytokine TWEAK , Disease Models, Animal , Female , Fluorescent Antibody Technique , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/immunology , Intestinal Mucosa/metabolism , Intestines/immunology , Luminescent Measurements , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, IgG/immunology , Receptors, IgG/metabolism , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Rituximab , TWEAK Receptor , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factors/immunology , Tumor Necrosis Factors/metabolism
7.
Proc Natl Acad Sci U S A ; 112(4): 1125-30, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25583478

ABSTRACT

Graft-versus-host disease (GvHD) is a life-threatening immunological complication after allogenic hematopoietic stem cell transplantation (allo-HCT). The intrinsic graft-versus-leukemia (GvL) effect, however, is the desirable curative benefit. Patients with acute GvHD are treated with cyclosporine A (CsA) or tacrolimus (FK506), which not only often causes severe adverse effects, but also interferes with the anticipated GvL. Both drugs inhibit calcineurin, thus at first suppressing activation of the nuclear factor of activated T cells (NFAT). Therefore, we explored the specific contribution of individual NFAT factors in donor T cells in animal models of GvHD and GvL. Ablation of NFAT1, NFAT2, or a combination of both resulted in ameliorated GvHD, due to reduced proliferation, target tissue homing, and impaired effector function of allogenic donor T cells. In contrast, the frequency of Foxp3(+) regulatory T (Treg) cells was increased and NFAT-deficient Tregs were fully protective in GvHD. CD8(+) T-cell recall response and, importantly, the beneficial antitumor activity were largely preserved in NFAT-deficient effector T cells. Thus, specific inhibition of NFAT opens an avenue for an advanced therapy of GvHD maintaining protective GvL.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , NFATC Transcription Factors/immunology , T-Lymphocytes, Regulatory/immunology , Allografts , Animals , CD8-Positive T-Lymphocytes/pathology , Calcineurin Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclosporine/pharmacology , Disease Models, Animal , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Graft vs Leukemia Effect/genetics , Hematopoietic Stem Cell Transplantation , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , T-Lymphocytes, Regulatory/pathology , Tacrolimus/pharmacology
8.
PLoS One ; 8(9): e75737, 2013.
Article in English | MEDLINE | ID: mdl-24098720

ABSTRACT

Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+) T cells and CD4(+) forkhead box P3 (FoxP3)(+) regulatory T cells (Treg) but reduced numbers of CD8(+) T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+) T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.


Subject(s)
Carcinoma, Ductal/physiopathology , Gene Expression Regulation/immunology , Pancreatic Neoplasms/physiopathology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Carcinoma, Ductal/immunology , Carcinoma, Ductal/metabolism , Cell Line, Tumor , DNA Primers/genetics , Flow Cytometry , Interleukin-4/metabolism , Luminescent Measurements , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type II/deficiency , Reverse Transcriptase Polymerase Chain Reaction
9.
BMC Med ; 11: 134, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23692886

ABSTRACT

BACKGROUND: Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. METHODS: Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. RESULTS: We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4ß7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. CONCLUSIONS: Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.


Subject(s)
Disease Models, Animal , Graft vs Host Disease/diagnosis , Graft vs Host Disease/surgery , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocyte Subsets/transplantation , Acute Disease , Animals , Blood Group Incompatibility/immunology , Female , Forecasting , Graft vs Host Disease/immunology , HLA Antigens/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology , Time Factors , Transplantation, Homologous , Treatment Outcome
10.
Carcinogenesis ; 34(6): 1296-303, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23385062

ABSTRACT

The cytokine tumor necrosis factor (TNF) has pleiotropic functions both in normal physiology and disease. TNF signals by the virtue of two cell surface receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Exogenous TNF promotes experimental metastasis in some models, yet the underlying mechanisms are poorly understood. To study the contribution of host TNFR1 and TNFR2 on tumor cell progression and metastasis, we employed a syngeneic B16F10 melanoma mouse model of lung metastasis combined with in vivo bioluminescence imaging. Treatment of tumor-bearing mice with recombinant human TNF resulted in a significant increase in tumor burden and metastatic foci. This correlated with an increase in pulmonary regulatory CD4(+)/Foxp3(+) T cells. TNF caused an expansion of regulatory T (Treg) cells in vitro in a TNFR2-dependent manner. To assess the contribution of immune cell expression of endogenous TNF and its two receptors on B16F10 metastasis, we generated bone marrow chimeras by reconstituting wild-type mice with bone marrow from different knockout mice. Loss of either TNF or TNFR2 on immune cells resulted in decreased B16F10 metastasis and lower numbers of Treg cells within the lungs of these animals. Selective depletion of Treg cells attenuated metastasis even in conjunction with TNF treatment. We propose a novel mechanism in which TNF activates TNFR2 on Treg cells and thereby expands this immunosuppressive immune cell population. Loss of either TNF or TNFR2 prevents the accumulation of Treg cells and results in a less tolerogenic environment, enabling the immune system to control B16F10 tumor metastasis and growth.


Subject(s)
Lung Neoplasms/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , CD4 Antigens/biosynthesis , Cell Line, Tumor , Cell Proliferation , Forkhead Transcription Factors/biosynthesis , Lung Neoplasms/secondary , Melanoma , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Metastasis , Receptors, Tumor Necrosis Factor, Type I/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
J Clin Invest ; 122(12): 4439-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143304

ABSTRACT

Understanding the spatiotemporal changes of cellular and molecular events within an organism is crucial to elucidate the complex immune processes involved in infections, autoimmune disorders, transplantation, and neoplastic transformation and metastasis. Here we introduce a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues. This approach allowed us to successfully quantify changes in expression patterns of mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and T cell responses in Peyer's patches following stimulation of the immune system. In addition, we employed LSFM to map individual T cell subsets after hematopoietic cell transplantation and detected rare cellular events. Thus, we present a versatile imaging technology that should be highly beneficial in biomedical research.


Subject(s)
Adaptive Immunity , Imaging, Three-Dimensional/methods , Animals , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Single-Cell Analysis , Whole Body Imaging
12.
PLoS One ; 7(12): e52398, 2012.
Article in English | MEDLINE | ID: mdl-23300660

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy. MATERIAL AND METHODS: A mouse model was created by intravenously injecting bone marrow-homing mouse myeloma cells (MOPC-315.BM) that expressed luciferase into BALB/c wild type mice. The luciferase in the myeloma cells allowed in vivo tracking before and after melphalan treatment with bioluminescence imaging (BLI). Homing of MOPC-315.BM luciferase+ myeloma cells to specific tissues was examined by flow cytometry. Idiotype-specific myeloma protein serum levels were measured by ELISA. In vivo measurements were validated with histopathology. RESULTS: Strong bone marrow tropism and subsequent dissemination of MOPC-315.BM luciferase(+) cells in vivo closely mimicked the human disease. In vivo BLI and later histopathological analysis revealed that 12 days of melphalan treatment slowed tumor progression and reduced MM dissemination compared to untreated controls. MOPC-315.BM luciferase(+) cells expressed CXCR4 and high levels of CD44 and α4ß1 in vitro which could explain the strong bone marrow tropism. The results showed that MOPC-315.BM cells dynamically regulated homing receptor expression and depended on interactions with surrounding cells. CONCLUSIONS: This study described a novel MM mouse model that facilitated convenient, reliable, and sensitive tracking of myeloma cells with whole body BLI in living animals. This model is highly suitable for monitoring the effects of different treatment regimens.


Subject(s)
Disease Progression , Molecular Imaging/methods , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Female , Hematopoiesis/drug effects , Humans , Luciferases/genetics , Melphalan/pharmacology , Melphalan/therapeutic use , Mice , Mice, Inbred BALB C , Multiple Myeloma/genetics , Neoplasm Invasiveness , Spatio-Temporal Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...