Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Phys Med ; 121: 103358, 2024 May.
Article in English | MEDLINE | ID: mdl-38643558

ABSTRACT

PURPOSE: To review required margins in ocular proton therapy (OPT) based on an uncertainty estimation and to compare them with widely used values. Further, uncertainties when using registered funduscopy images in the 3D model is investigated. METHODS: An uncertainty budget in planning and delivery was defined to determine required aperture and range margins. Setup uncertainties were considered for a cohort of treated patients and tested in a worst-case estimation. Other uncertainties were based on a best-guess and knowledge of institutional specifics, e.g. range reproducibility. Margins for funduscopy registration were defined resulting from scaling, rotation and translation of the image. Image formation for a wide-field fundus camera was reviewed and compared to the projection employed in treatment planning systems. RESULTS: Values for aperture and range with margins of 2.5 mm as reported in literature could be determined. Aperture margins appear appropriate for setup uncertainties below 0.5 mm, but depend on lateral penumbra. Range margins depend on depth and associated density uncertainty in tissue. Registration of funduscopy images may require margins of >2 mm, increasing towards the equator. Difference in the projection may lead to discrepancies of several mm. CONCLUSIONS: The commonly used 2.5 mm aperture margin was validated as an appropriate choice, while range margins could be reduced for lower ranges. Margins may however not include uncertainties in contouring and possible microscopic spread. If a target base is contoured on registered funduscopy images care must be taken as they are subject to larger uncertainties. Multimodal imaging approach in OPT remains advisable.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted , Uncertainty , Humans , Radiotherapy Planning, Computer-Assisted/methods , Eye Neoplasms/radiotherapy , Eye Neoplasms/diagnostic imaging
2.
Med Phys ; 51(3): 2277-2292, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37991110

ABSTRACT

BACKGROUND: A Faraday cup (FC) facilitates a quite clean measurement of the proton fluence emerging from clinical spot-scanning nozzles with narrow pencil-beams. The utilization of FCs appears to be an attractive option for high dose rate delivery modes and the source models of Monte-Carlo (MC) dose engines. However, previous studies revealed discrepancies of 3%-6% between reference dosimetry with ionization chambers (ICs) and FC-based dosimetry. This has prevented the widespread use of FCs for dosimetry in proton therapy. PURPOSE: The current study aims at bridging the gap between FC dosimetry and IC dosimetry of proton fields delivered with spot-scanning treatment heads. Particularly, a novel method to evaluate FC measurements is introduced. METHODS: A consistency check is formulated, which makes use of the energy balance and the reciprocity theorem. The measurement data comprise central-axis depth distributions of the absorbed dose of quasi-monochromatic fields with a width of about 28.5 cm and FC measurements of the reciprocal fields with a single spot. These data are complemented by a look-up of energy-range tables, the average Q-value of transmutations, and the escape energy carried away by neutrons and photons. The latter data are computed by MC simulations, which in turn are validated with measurements of the distal dose tail and neutron out-of-field doses. For comparison, the conventional approach of FC evaluation is performed, which computes absorbed dose from the product of fluence and stopping power. The results from the FC measurements are compared with the standard dosimetry protocols and improved reference dosimetry methods. RESULTS: The deviation between the conventional FC-based dosimetry and the IC-based one according to standard dosimetry protocols was -4.7 ( ± $\pm$ 3.3)% for a 100 MeV field and -3.6 ( ± $\pm$ 3.5)% for 200 MeV, thereby agreeing within the reported uncertainties. The deviations could be reduced to -4.0 ( ± $\pm$ 2.9)% and -3.0 ( ± $\pm$ 3.1)% by adopting state-of-the-art reference dosimetry methods. The alternative approach using the energy balance gave deviations of only -1.9% (100 MeV) and -2.6% (200 MeV) using state-of-the-art dosimetry. The standard uncertainty of this novel approach was estimated to be about 2%. CONCLUSIONS: An alternative concept has been established to determine the absorbed dose of monoenergetic proton fields with an FC. It eliminates the strong dependence of the conventional FC-based approach on the MC simulation of the stopping-power and of the secondary ions, which according to the study at hand is the major contributor to the underestimation of the absorbed dose. Some contributions to the uncertainty of the novel approach could potentially be reduced in future studies. This would allow for accurate consistency tests of conventional dosimetry procedures.


Subject(s)
Proton Therapy , Protons , Radiometry/methods , Computer Simulation , Calibration , Monte Carlo Method , Radiotherapy Dosage
3.
Med Phys ; 51(1): 622-636, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37877574

ABSTRACT

BACKGROUND: Applying tolerance doses for organs at risk (OAR) from photon therapy introduces uncertainties in proton therapy when assuming a constant relative biological effectiveness (RBE) of 1.1. PURPOSE: This work introduces the novel dirty and clean dose concept, which allows for creating treatment plans with a more photon-like dose response for OAR and, thus, less uncertainties when applying photon-based tolerance doses. METHODS: The concept divides the 1.1-weighted dose distribution into two parts: the clean and the dirty dose. The clean and dirty dose are deposited by protons with a linear energy transfer (LET) below and above a set LET threshold, respectively. For the former, a photon-like dose response is assumed, while for the latter, the RBE might exceed 1.1. To reduce the dirty dose in OAR, a MaxDirtyDose objective was added in treatment plan optimization. It requires setting two parameters: LET threshold and max dirty dose level. A simple geometry consisting of one target volume and one OAR in water was used to study the reduction in dirty dose in the OAR depending on the choice of the two MaxDirtyDose objective parameters during plan optimization. The best performing parameter combinations were used to create multiple dirty dose optimized (DDopt) treatment plans for two cranial patient cases. For each DDopt plan, 1.1-weighted dose, variable RBE-weighted dose using the Wedenberg RBE model and dose-average LETd distributions as well as resulting normal tissue complication probability (NTCP) values were calculated and compared to the reference plan (RefPlan) without MaxDirtyDose objectives. RESULTS: In the water phantom studies, LET thresholds between 1.5 and 2.5 keV/µm yielded the best plans and were subsequently used. For the patient cases, nearly all DDopt plans led to a reduced Wedenberg dose in critical OAR. This reduction resulted from an LET reduction and translated into an NTCP reduction of up to 19 percentage points compared to the RefPlan. The 1.1-weighted dose in the OARs was slightly increased (patient 1: 0.45 Gy(RBE), patient 2: 0.08 Gy(RBE)), but never exceeded clinical tolerance doses. Additionally, slightly increased 1.1-weighted dose in healthy brain tissue was observed (patient 1: 0.81 Gy(RBE), patient 2: 0.53 Gy(RBE)). The variation of NTCP values due to variation of α/ß from 2 to 3 Gy was much smaller for DDopt (2 percentage points (pp)) than for RefPlans (5 pp). CONCLUSIONS: The novel dirty and clean dose concept allows for creating biologically more robust proton treatment plans with a more photon-like dose response. The reduced uncertainties in RBE can, therefore, mitigate uncertainties introduced by using photon-based tolerance doses for OAR.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Protons , Linear Energy Transfer , Radiotherapy Dosage , Relative Biological Effectiveness , Water , Radiotherapy Planning, Computer-Assisted/methods
5.
Int J Part Ther ; 10(1): 13-22, 2023.
Article in English | MEDLINE | ID: mdl-37823014

ABSTRACT

Purpose: To evaluate the feasibility of the three-dimensional (3D) printed small animal phantoms in dosimetric verification of proton therapy for small animal radiation research. Materials and Methods: Two different phantoms were modeled using the computed-tomography dataset of real rat and tumor-bearing mouse, retrospectively. Rat phantoms were designed to accommodate both EBT3 film and ionization chamber. A subcutaneous tumor-bearing mouse phantom was only modified to accommodate film dosimetry. All phantoms were printed using polylactic-acid (PLA) filament. Optimal printing parameters were set to create tissue-equivalent material. Then, proton therapy plans for different anatomical targets, including whole brain and total lung irradiation in the rat phantom and the subcutaneous tumor model in the mouse phantom, were created using the pencil-beam scanning technique. Point dose and film dosimetry measurements were performed using 3D-printed phantoms. In addition, all phantoms were analyzed in terms of printing accuracy and uniformity. Results: Three-dimensionally printed phantoms had excellent uniformity over the external body, and printing accuracy was within 0.5 mm. According to our findings, two-dimensional dosimetry with EBT3 showed acceptable levels of γ passing rate for all measurements except for whole brain irradiation (γ passing rate, 89.8%). In terms of point dose analysis, a good agreement (<0.1%) was found between the measured and calculated point doses for all anatomical targets. Conclusion: Three-dimensionally printed small animal phantoms show great potential for dosimetric verifications of clinical proton therapy for small animal radiation research.

6.
Front Oncol ; 13: 1222800, 2023.
Article in English | MEDLINE | ID: mdl-37795436

ABSTRACT

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

7.
Phys Eng Sci Med ; 46(3): 1287-1295, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37405636

ABSTRACT

To dosimetrically compare applicator-guided intensity-modulated proton therapy (IMPT) and multichannel brachytherapy (MC-BRT) for vaginal vault irradiation (VVI) with special focus on dose to organs at risk (OARs) and normal tissues. Ten patients with uterine confined endometrial cancer who received adjuvant vaginal cuff brachytherapy were included in this study. For each patient an additional IMPT treatment plan was created using the same computed tomography dataset and contours segmented for MC-BRT plans. Clinical target volume (CTV) was defined as the proximal 3.5 cm of the vagina including the entire thickness of vaginal wall. Planning target volume for IMPT plans was generated from the CTV with an addition isotropic 3 mm margin. OARs included rectum, bladder, sigmoid, small bowel and femoral heads. The prescribed dose was 21 Gy in 3 fractions. For simplicity, all doses were expressed in Gy and a constant relative biological effectiveness of 1.1 was used for IMPT plans. Plan comparison was performed using dose-volume histogram and treatment planning parameters. A significant improvement of the D98% coverage for CTV was reached by the applicator-guided IMPT plans (p < 0.01). IMPT also provided a dose reduction in all OARs except for femoral heads due to the lateral beam direction, especially significant reduction of V5Gy, D2cc, D0.1 cc, Dmean, V95% values for the rectum and Dmean, D0.1 cc to bladder, sigmoid, small bowel. Additionally, IMPT plans showed a significant reduction of integral dose to normal tissue with respect to MC-BRT (221.5 cGy.L vs. 653.6 cGy.L, p < 0.01). Applicator-guided IMPT has the potential for improving plan quality in VVI while maintaining the high conformity afforded by the state-of-the-art intracavitary brachytherapy.


Subject(s)
Endometrial Neoplasms , Radiation Dosage , Endometrial Neoplasms/therapy , Proton Therapy/methods , Brachytherapy/methods , Humans , Female , Vagina
8.
Front Pediatr ; 11: 1163022, 2023.
Article in English | MEDLINE | ID: mdl-37408981

ABSTRACT

Introduction: For most patients, cancer therapy with radiation is a new experience coming with many unknown challenges. This can be stressful, particularly for children and adolescents. With the aim of reducing this stress and anxiety, a virtual-reality (VR) game, which can be used by patients prior to treatment, was developed and evaluated in a proton therapy center. Methods: The specifications were derived from literature and from interviews with medical staff and patients. The gantry including the sound of its moving components and the sound of the interlock and safety system were identified as the main features relevant for preparation of a radiation course. Potential implementation difficulties were identified in a literature study and regarded in the design. Within the VR game, patients could interact with modeled equipment of the treatment room and hear the reportedly stress-inducing sounds in a stress-free environment prior to the treatment. The VR game was evaluated in a second series of interviews with patients. Results and Discussion: This exploratory study demonstrated the specification, implementation and safe application of a VR game dedicated to young proton therapy patients. Initial anecdotal evidence suggested that the VR gaming experience was well received and found to be helpful when preparing young patients for radiation therapy.

9.
Chemistry ; 29(50): e202301260, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37334753

ABSTRACT

Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.


Subject(s)
Metal Nanoparticles , Proton Therapy , Radiation-Sensitizing Agents , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Reactive Oxygen Species
10.
Med Phys ; 50(7): 4546-4561, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36908165

ABSTRACT

BACKGROUND AND PURPOSE: As a part of the commissioning and quality assurance in proton beam therapy, lateral dose profiles and output factors have to be acquired. Such measurements can be performed with point detectors and are especially challenging in small fields or steep lateral penumbra regions as the detector's volume effect may lead to perturbations. To address this issue, this work aims to quantify and correct for such perturbations of six point detectors in small proton fields created via three different delivery techniques. METHODS: Lateral dose profile and output measurements of three proton beam delivery techniques (pencil beam scanning, pencil beam scanning combined with collimators, passive scattering with collimators) were performed using high-resolution EBT3 films, a PinPoint 3D 31022 ionization chamber, a microSilicon diode 60023 and a microDiamond detector 60019 (all PTW Freiburg, Germany). Detector specific lateral dose response functions K(x,y) acting as the convolution kernel transforming the undisturbed dose distribution D(x,y) into the measured signal profiles M(x,y) were applied to quantify perturbations of the six investigated detectors in the proton fields and correct the measurements. A signal theoretical analysis in Fourier space of the dose distributions and detector's K(x,y) was performed to aid the understanding of the measurement process with regard to the combination of detector choice and delivery technique. RESULTS: Quantification of the lateral penumbra broadening and signal reduction at the fields center revealed that measurements in the pencil beam scanning fields are only compromised slightly even by large volume ionization chambers with maximum differences in the lateral penumbra of 0.25 mm and 4% signal reduction at the field center. In contrast, radiation techniques with collimation are not accurately represented by the investigated detectors as indicated by a penumbra broadening up to 1.6 mm for passive scattering with collimators and 2.2 mm for pencil beam scanning with collimators. For a 3 mm diameter collimator field, a signal reduction at field center between 7.6% and 60.7% was asserted. Lateral dose profile measurements have been corrected via deconvolution with the corresponding K(x,y) to obtain the undisturbed D(x,y). Corrected output ratios of the passively scattered collimated fields obtained for the microDiamond, microSilicon and PinPoint 3D show agreement better than 0.9% (one standard deviation) for the smallest field size of 3 mm. CONCLUSION: Point detector perturbations in small proton fields created with three delivery techniques were quantified and found to be especially pronounced for collimated small proton fields with steep dose gradients. Among all investigated detectors, the microSilicon diode showed the smallest perturbations. The correction strategies based on detector's K(x,y) were found suitable for obtaining unperturbed lateral dose profiles and output factors. Approximation of K(x,y) by considering only the geometrical averaging effect has been shown to provide reasonable prediction of the detector's volume effect. The findings of this work may be used to guide the choice of point detectors in various proton fields and to contribute toward the development of a code of practice for small field proton dosimetry.


Subject(s)
Protons , Radiometry , Monte Carlo Method , Radiometry/methods , Particle Accelerators , Algorithms , Photons/therapeutic use
11.
Phys Med Biol ; 68(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36821866

ABSTRACT

Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVµm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVµm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Monte Carlo Method
12.
Med Phys ; 50(4): 2540-2551, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36609847

ABSTRACT

BACKGROUND: The addition of static or dynamic collimator systems to the pencil beam scanning delivery technique increases the number of options for lateral field shaping. The collimator shape needs to be optimized together with the intensity modulation of spots. PURPOSE: To minimize the proton field's lateral penumbra by investigating the fundamental relations between spot and collimating aperture edge position. METHODS: Analytical approaches describing the effect of spot position on the resulting spot profile are presented. The theoretical description is then compared with Monte Carlo simulations in TOPAS and in the RayStation treatment planning system, as well as with radiochromic film measurements at a clinical proton therapy facility. In the model, one single spot profile is analyzed for various spot positions in air. Further, irradiation setups in water with different energies, the combination with a range shifter, and two-dimensional proton fields were investigated in silico. RESULTS: The further the single spot is placed beyond the collimating aperture edge ('overscanning'), the sharper the relative lateral dose fall-off and thus the lateral penumbra. Overscanning up to 5 mm $5\,\text{mm}$ reduced the lateral penumbra by about 20% on average after a propagation of 13 cm $13\,\text{cm}$ in air. This benefit from overscanning is first predicted by the analytical proofs and later verified by simulations and measurements. Corresponding analyses in water confirm the benefit in lateral penumbra with spot position optimization as observed theoretically and in air. The combination of spot overscanning with fluence modulation facilitated an additional improvement. CONCLUSIONS: The lateral penumbra of single spots in collimated scanned proton fields can be improved by the method of spot overscanning. This suggests a better sparing of proximal organs at risk in smaller water depths at higher energies, especially in the plateau of the depth dose distribution. All in all, spot overscanning in collimated scanned proton fields offers particular potential in combination with techniques such as fluence modulation or dynamic collimation for optimizing the lateral penumbra to spare normal tissue.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Protons , Phantoms, Imaging , Radiotherapy Dosage , Proton Therapy/methods , Monte Carlo Method , Water
13.
Curr Oncol ; 30(1): 758-768, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36661707

ABSTRACT

BACKGROUND: The aim of this study is to examine the dosimetric influence of endorectal balloons (ERB) on rectal sparing in prostate cancer patients with implanted hydrogel rectum spacers treated with dose-escalated or hypofractionated intensity-modulated proton beam therapy (IMPT). METHODS: Ten patients with localized prostate cancer included in the ProRegPros study and treated at our center were investigated. All patients underwent placement of hydrogel rectum spacers before planning. Two planning CTs (with and without 120 cm3 fluid-filled ERB) were applied for each patient. Dose prescription was set according to the h strategy, with 72 Gray (Gy)/2.4 Gy/5× weekly to prostate + 1 cm of the seminal vesicle, and 60 Gy/2 Gy/5× weekly to prostate + 2 cm of the seminal vesicle. Planning with two laterally opposed IMPT beams was performed in both CTs. Rectal dosimetry values including dose-volume statistics and normal tissue complication probability (NTCP) were compared for both plans (non-ERB plans vs. ERB plans). RESULTS: For ERB plans compared with non-ERB, the reductions were 8.51 ± 5.25 Gy (RBE) (p = 0.000) and 15.76 ± 11.11 Gy (p = 0.001) for the mean and the median rectal doses, respectively. No significant reductions in rectal volumes were found after high dose levels. The use of ERB resulted in significant reduction in rectal volume after receiving 50 Gy (RBE), 40 Gy (RBE), 30 Gy (RBE), 20 Gy (RBE), and 10 Gy (RBE) with p values of 0.034, 0.008, 0.003, 0.001, and 0.001, respectively. No differences between ERB and non-ERB plans for the anterior rectum were observed. ERB reduced posterior rectal volumes in patients who received 30 Gy (RBE), 20 Gy (RBE), or 10 Gy (RBE), with p values of 0.019, 0.003, and 0.001, respectively. According to the NTCP models, no significant reductions were observed in mean or median rectal toxicity (late rectal bleeding ≥ 2, necrosis or stenosis, and late rectal toxicity ≥ 3) when using the ERB. CONCLUSION: ERB reduced rectal volumes exposed to intermediate or low dose levels. However, no significant reduction in rectal volume was observed in patients receiving high or intermediate doses. There was no benefit and also no disadvantage associated with the use of ERB for late rectal toxicity, according to available NTCP models.


Subject(s)
Prostatic Neoplasms , Proton Therapy , Male , Humans , Rectum , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/radiotherapy , Hydrogels
14.
Z Med Phys ; 33(4): 529-541, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36577626

ABSTRACT

PURPOSE: The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called "spray". Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. METHODS: The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. RESULTS: SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. CONCLUSION: Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.


Subject(s)
Proton Therapy , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Proton Therapy/methods , Monte Carlo Method
15.
Med Phys ; 50(1): 365-379, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36195575

ABSTRACT

BACKGROUND: Until today, the majority of ocular proton treatments worldwide were planned with the EYEPLAN treatment planning system (TPS). Recently, the commercial, computed tomography (CT)-based TPS for ocular proton therapy RayOcular was released, which follows the general concepts of model-based treatment planning approach in conjunction with a pencil-beam-type dose algorithm (PBA). PURPOSE: To validate RayOcular with respect to two main features: accurate geometrical representation of the eye model and accuracy of its dose calculation algorithm in combination with an Ion Beam Applications (IBA) eye treatment delivery system. METHODS: Different 3D-printed eye-ball-phantoms were fabricated to test the geometrical representation of the corresponding CT-based model, both in orthogonal 2D images for X-ray image overlay and in fundus view overlaid with a funduscopy. For the latter, the phantom was equipped with a lens matching refraction of the human eye. Funduscopy was acquired in a Zeiss Claus 500 camera. Tantalum clips and fiducials attached to the phantoms were localized in the TPS model, and residual deviations to the actual position in X-ray images for various orientations of the phantom were determined, after the nominal eye orientation was corrected in RayOcular to obtain a best overall fit. In the fundus view, deviations between known and displayed distances were measured. Dose calculation accuracy of the PBA on a 0.2 mm grid was investigated by comparing between measured lateral and depth-dose profiles in water for various combinations of range, modulation, and field-size. Ultimately, the modeling of dose distributions behind wedges was tested. A 1D gamma-test was applied, and the lateral and distal penumbra were further compared. RESULTS: Average residuals between model clips and visible clips/fiducials in orthogonal X-ray images were within 0.3 mm, including different orientations of the phantom. The differences between measured distances on the registered funduscopy image in the RayOcular fundus view and the known ground-truth were within 1 mm up to 10.5 mm distance from the posterior pole. No clear benefit projection of either polar mode or camera mode could be identified, the latter mimicking camera properties. Measured dose distributions were reproduced with gamma-test pass-rates of >95% with 2%/0.3 mm for depth and lateral profiles in the middle of spread-out Bragg-peaks. Distal falloff and lateral penumbra were within 0.2 mm for fields without a wedge. For shallow depths, the agreement was worse, reaching pass-rates down to 80% with 5%/0.3 mm when comparing lateral profiles in air. This is caused by low-energy protons from a scatter source in the IBA system not modeled by RayOcular. Dose distributions modified by wedges were reproduced, matching the wedge-induced broadening of the lateral penumbra to within 0.4 mm for the investigated cases and showing the excess dose within the field due to wedge scatter. CONCLUSION: RayOcular was validated for its use with an IBA single scattering delivery nozzle. Geometric modeling of the eye and representation of 2D projections fulfill clinical requirements. The PBA dose calculation reproduces measured distributions and allows explicit handling of wedges, overcoming approximations of simpler dose calculation algorithms used in other systems.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Protons , Algorithms , Phantoms, Imaging , Monte Carlo Method
16.
Cancers (Basel) ; 14(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36497345

ABSTRACT

As radiotherapy is an important part of the treatment in a variety of pediatric tumors of the central nervous system (CNS), proton beam therapy (PBT) plays an evolving role due to its potential benefits attributable to the unique dose distribution, with the possibility to deliver high doses to the target volume while sparing surrounding tissue. Children receiving PBT for an intracranial tumor between August 2013 and October 2017 were enrolled in the prospective registry study KiProReg. Patient's clinical data including treatment, outcome, and follow-up were analyzed using descriptive statistics, Kaplan-Meier, and Cox regression analysis. Adverse events were scored according to the Common Terminology Criteria for Adverse Events (CTCAE) 4.0 before, during, and after PBT. Written reports of follow-up imaging were screened for newly emerged evidence of imaging changes, according to a list of predefined keywords for the first 14 months after PBT. Two hundred and ninety-four patients were enrolled in this study. The 3-year overall survival of the whole cohort was 82.7%, 3-year progression-free survival was 67.3%, and 3-year local control was 79.5%. Seventeen patients developed grade 3 adverse events of the CNS during long-term follow-up (new adverse event n = 7; deterioration n = 10). Two patients developed vision loss (CTCAE 4°). This analysis demonstrates good general outcomes after PBT.

17.
Curr Oncol ; 29(11): 8222-8234, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36354709

ABSTRACT

BACKGROUND: Despite an intensive multimodal treatment approach, approximately 50% of high-risk (HR) neuroblastoma (NB) patients experience progression. Despite the advances in targeted therapy, high-dose chemotherapy, and other systemic treatment options, radiation therapy (RT) to sites of relapsed disease can be an option to reduce tumor burden and improve chance for disease control. METHODS: Patients who received salvage irradiation with proton beam therapy (PBT) for local or metastatic relapse of HR NB within the prospective registry trials KiProReg and ProReg were eligible for this retrospective analysis. Data on patient characteristics, multimodality therapy, adverse events, and oncologic endpoints were evaluated. Adverse events were assessed before, during, and after PBT according to common terminology criteria for adverse events (CTCAE) V4.0. RESULTS: Between September 2013 and September 2020, twenty (11 male; 9 female) consecutive patients experiencing local (N = 9) or distant recurrence (N = 25) were identified for this analysis. Distant recurrences included osteomedullary (N = 11) or CNS lesions (N = 14). Salvage therapy consisted of re-induction chemo- or chemo-immuno-therapy (N = 19), surgery (N = 6), high-dose chemotherapy and stem cell transplantation (N = 13), radiation (N = 20), and concurrent systemic therapy. Systemic therapy concurrent to RT was given to six patients and included temozolomide (N = 4), carboplatine (N = 1), or anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKI) (N = 1). A median dose of 36 Gy was applied to the 34 recurrent sites. Local RT was applied to 15 patients, while five patients, received craniospinal irradiation for CNS relapse. After a median follow-up (FU) of 20 months (4-66), the estimated rate for local control, distant metastatic free survival, and overall survival at 3 years was 68.0%, 37.9%, and 61.6%, respectively. During RT, ten patients (50%) presented with a higher-grade acute hematologic adverse event. Late higher-grade sequelae included transient myelitis with transverse section (N = 2) and secondary malignancy outside of the RT field (N = 1). CONCLUSION: Our study demonstrates the efficacy and safety of RT/PBT for recurrent HR NB in a multimodality second-line approach. To better define the role of RT for these patients, prospective studies would be desirable.


Subject(s)
Neuroblastoma , Proton Therapy , Humans , Male , Female , Proton Therapy/adverse effects , Retrospective Studies , Prospective Studies , Feasibility Studies , Neoplasm Recurrence, Local/radiotherapy , Neuroblastoma/radiotherapy , Neuroblastoma/etiology , Registries
18.
Langmuir ; 38(43): 13030-13047, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36260482

ABSTRACT

Sterilization is a major prerequisite for the utilization of nanoparticle colloids in biomedicine, a process well examined for particles derived from chemical synthesis although highly underexplored for electrostatically stabilized ligand-free gold nanoparticles (AuNPs). Hence, in this work, we comprehensively examined and compared the physicochemical characteristics of laser-generated ligand-free colloidal AuNPs exposed to steam sterilization and sterile filtration as a function of particle size and mass concentration and obtained physicochemical insight into particle growth processes. These particles exhibit long-term colloidal stability (up to 3 months) derived from electrostatic stabilization without using any ligands or surfactants. We show that particle growth attributed to cluster-based ripening occurs in smaller AuNPs (∼5 nm) following autoclaving, while larger particles (∼10 and ∼30 nm) remain stable. Sterile filtration, as an alternative effective sterilizing approach, has no substantial impact on the colloidal stability of AuNPs, regardless of particle size, although a mass loss of 5-10% is observed. Finally, we evaluated the impact of the sterilization procedures on potential particle functionality in proton therapy, using the formation of reactive oxygen species (ROS) as a readout. In particular, 5 nm AuNPs exhibit a significant loss in activity upon autoclaving, probably dedicated to specific surface area reduction and surface restructuring during particle growth. The filtered analog enhanced the ROS release by up to a factor of ∼2.0, at 30 ppm gold concentration. Our findings highlight the need for carefully adapting the sterilization procedure of ligand-free NPs to the desired biomedical application with special emphasis on particle size and concentration.


Subject(s)
Gold , Metal Nanoparticles , Reactive Oxygen Species , Particle Size , Ligands , Sterilization
19.
Radiat Oncol ; 17(1): 169, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273132

ABSTRACT

BACKGROUND: To introduce and compare multiple biological effectiveness guided (BG) proton plan optimization strategies minimizing variable relative biological effectiveness (RBE) induced dose burden in organs at risk (OAR) while maintaining plan quality with a constant RBE. METHODS: Dose-optimized (DOSEopt) proton pencil beam scanning reference treatment plans were generated for ten cranial patients with prescription doses ≥ 54 Gy(RBE) and ≥ 1 OAR close to the clinical target volume (CTV). For each patient, four additional BG plans were created. BG objectives minimized either proton track-ends, dose-averaged linear energy transfer (LETd), energy depositions from high-LET protons or variable RBE-weighted dose (DRBE) in adjacent serially structured OARs. Plan quality (RBE = 1.1) was assessed by CTV dose coverage and robustness (2 mm setup, 3.5% density), dose homogeneity and conformity in the planning target volumes and adherence to OAR tolerance doses. LETd, DRBE (Wedenberg model, α/ßCTV = 10 Gy, α/ßOAR = 2 Gy) and resulting normal tissue complication probabilities (NTCPs) for blindness and brainstem necrosis were derived. Differences between DOSEopt and BG optimized plans were assessed and statistically tested (Wilcoxon signed rank, α = 0.05). RESULTS: All plans were clinically acceptable. DOSEopt and BG optimized plans were comparable in target volume coverage, homogeneity and conformity. For recalculated DRBE in all patients, all BG plans significantly reduced near-maximum DRBE to critical OARs with differences up to 8.2 Gy(RBE) (p < 0.05). Direct DRBE optimization primarily reduced absorbed dose in OARs (average ΔDmean = 2.0 Gy; average ΔLETd,mean = 0.1 keV/µm), while the other strategies reduced LETd (average ΔDmean < 0.3 Gy; average ΔLETd,mean = 0.5 keV/µm). LET-optimizing strategies were more robust against range and setup uncertaintes for high-dose CTVs than DRBE optimization. All BG strategies reduced NTCP for brainstem necrosis and blindness on average by 47% with average and maximum reductions of 5.4 and 18.4 percentage points, respectively. CONCLUSIONS: All BG strategies reduced variable RBE-induced NTCPs to OARs. Reducing LETd in high-dose voxels may be favourable due to its adherence to current dose reporting and maintenance of clinical plan quality and the availability of reported LETd and dose levels from clinical toxicity reports after cranial proton therapy. These optimization strategies beyond dose may be a first step towards safely translating variable RBE optimization in the clinics.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Necrosis , Blindness
20.
Cancers (Basel) ; 14(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35681594

ABSTRACT

BACKGROUND AND PURPOSE: Interfractional anatomical changes might affect the outcome of proton therapy (PT). We aimed to prospectively evaluate the role of Magnetic Resonance Imaging (MRI) based adaptive PT for children with tumors of the head and neck and base of skull. METHODS: MRI verification images were acquired at half of the treatment course. A synthetic computed tomography (CT) image was created using this MRI and a deformable image registration (DIR) to the reference MRI. The methodology was verified with in-silico phantoms and validated using a clinical case with a shrinking cystic hygroma on the basis of dosimetric quantities of contoured structures. The dose distributions on the verification X-ray CT and on the synthetic CT were compared with a gamma-index test using global 2 mm/2% criteria. RESULTS: Regarding the clinical validation case, the gamma-index pass rate was 98.3%. Eleven patients were included in the clinical study. The most common diagnosis was rhabdomyosarcoma (73%). Craniofacial tumor site was predominant in 64% of patients, followed by base of skull (18%). For one individual case the synthetic CT showed an increase in the median D2 and Dmax dose on the spinal cord from 20.5 GyRBE to 24.8 GyRBE and 14.7 GyRBE to 25.1 GyRBE, respectively. Otherwise, doses received by OARs remained relatively stable. Similarly, the target volume coverage seen by D95% and V95% remained unchanged. CONCLUSIONS: The method of transferring anatomical changes from MRIs to a synthetic CTs was successfully implemented and validated with simple, commonly available tools. In the frame of our early results on a small cohort, no clinical relevant deterioration for neither PTV coverage nor an increased dose burden to OARs occurred. However, the study will be continued to identify a pediatric patient cohort, which benefits from adaptive treatment planning.

SELECTION OF CITATIONS
SEARCH DETAIL
...