Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 132(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36006736

ABSTRACT

Invasive bacterial infections remain a major cause of human morbidity. Group B streptococcus (GBS) are Gram-positive bacteria that cause invasive infections in humans. Here, we show that factor XIIIA-deficient (FXIIIA-deficient) female mice exhibited significantly increased susceptibility to GBS infections. Additionally, female WT mice had increased levels of FXIIIA and were more resistant to GBS infection compared with isogenic male mice. We observed that administration of exogenous FXIIIA to male mice increased host resistance to GBS infection. Conversely, administration of a FXIIIA transglutaminase inhibitor to female mice decreased host resistance to GBS infection. Interestingly, male gonadectomized mice exhibited decreased sensitivity to GBS infection, suggesting a role for gonadal androgens in host susceptibility. FXIIIA promoted GBS entrapment within fibrin clots by crosslinking fibronectin with ScpB, a fibronectin-binding GBS surface protein. Thus, ScpB-deficient GBS exhibited decreased entrapment within fibrin clots in vitro and increased dissemination during systemic infections. Finally, using mice in which FXIIIA expression was depleted in mast cells, we observed that mast cell-derived FXIIIA contributes to host defense against GBS infection. Our studies provide insights into the effects of sexual dimorphism and mast cells on FXIIIA expression and its interactions with GBS adhesins that mediate bacterial dissemination and pathogenesis.


Subject(s)
Factor XIIIa , Streptococcal Infections , Androgens/metabolism , Animals , Factor XIIIa/metabolism , Female , Fibrin/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Male , Mast Cells/metabolism , Mice , Streptococcal Infections/genetics , Streptococcus agalactiae/metabolism , Transglutaminases/metabolism
2.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477282

ABSTRACT

The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1-Cys37) and the flexible C-terminal part (Arg38-Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure-activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.


Subject(s)
Factor XIIIa/antagonists & inhibitors , Magnetic Resonance Spectroscopy/methods , Salivary Proteins and Peptides/pharmacology , Amino Acid Sequence , Animals , Disulfides/chemistry , Factor XIIIa/metabolism , Fibrinolytic Agents/pharmacology , Humans , Isomerism , Leeches/metabolism , Magnetic Resonance Imaging/methods , Models, Molecular , Molecular Dynamics Simulation , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Structure-Activity Relationship
3.
Eur J Med Chem ; 201: 112474, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32698061

ABSTRACT

Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.


Subject(s)
Disulfides/chemistry , Factor XIIIa/antagonists & inhibitors , Salivary Proteins and Peptides/chemistry , Amino Acid Sequence , Animals , Disulfides/chemical synthesis , Factor XIIIa/genetics , Factor XIIIa/metabolism , Genes , Isomerism , Leeches/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Salivary Proteins and Peptides/chemical synthesis , Salivary Proteins and Peptides/metabolism
4.
Anal Biochem ; 605: 113708, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32335064

ABSTRACT

The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.


Subject(s)
Blood Coagulation , Cardiovascular Diseases/blood , Enzyme Inhibitors , Factor XIIIa/antagonists & inhibitors , Animals , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fibrin/metabolism , Humans , Protein Binding , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
5.
J Med Chem ; 62(7): 3513-3523, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852892

ABSTRACT

Tridegin is a potent and specific 66mer peptide inhibitor of coagulation factor XIIIa with six cysteines involved in three disulfide bonds. Three of the 15 possible 3-disulfide-bonded isomers have been identified, which share a bridge between cysteines 19 and 25. We synthesized the three possible 2-disulfide-bonded analogues using a targeted protecting group strategy to investigate the impact of the C19-C25 bond on tridegin's folding, stability, and function. The FXIIIa inhibitory activity of the analogues was retained, which was shown by in vitro fluorogenic activity and whole blood clotting assays. Molecular dynamics simulations of wild-type tridegin and the analogues as well as molecular docking studies with FXIIIa were performed to elucidate the impact of the C19-C25 bond on conformational stability and binding mode. The strategy of selectively reducing disulfide bonds to facilitate large-scale synthesis, while retaining the functionality of disulfide-bonded peptides, has been demonstrated with our present study.


Subject(s)
Disulfides/chemistry , Factor XIIIa/antagonists & inhibitors , Salivary Proteins and Peptides/pharmacology , Animals , Blood Coagulation/drug effects , Humans , Isomerism , Leeches , Molecular Dynamics Simulation , Protein Folding , Protein Stability , Salivary Proteins and Peptides/chemistry
6.
J Vis Exp ; (140)2018 10 02.
Article in English | MEDLINE | ID: mdl-30346393

ABSTRACT

Peptides with a high number of cysteines are usually influenced regarding the three-dimensional structure by their disulfide connectivity. It is thus highly important to avoid undesired disulfide bond formation during peptide synthesis, because it may result in a completely different peptide structure, and consequently altered bioactivity. However, the correct formation of multiple disulfide bonds in a peptide is difficult to obtain by using standard self-folding methods such as conventional buffer oxidation protocols, because several disulfide connectivities can be formed. This protocol represents an advanced strategy required for the targeted synthesis of multiple disulfide-bridged peptides which cannot be synthesized via buffer oxidation in high quality and quantity. The study demonstrates the application of a distinct protecting group strategy for the synthesis of all possible 3-disulfide-bonded peptide isomers of µ-conotoxin PIIIA in a targeted way. The peptides are prepared by Fmoc-based solid phase peptide synthesis using a protecting group strategy for defined disulfide bond formation. The respective pairs of cysteines are protected with trityl (Trt), acetamidomethyl (Acm), and tert-butyl (tBu) protecting groups to make sure that during every oxidation step only the required cysteines are deprotected and linked. In addition to the targeted synthesis, a combination of several analytical methods is used to clarify the correct folding and generation of the desired peptide structures. The comparison of the different 3-disulfide-bonded isomers indicates the importance of accurate determination and knowledge of the disulfide connectivity for the calculation of the three-dimensional structure and for interpretation of the biological activity of the peptide isomers. The analytical characterization includes the exact disulfide bond elucidation via tandem mass spectrometry (MS/MS) analysis which is performed with partially reduced and alkylated derivatives of the intact peptide isomer produced by an adapted protocol. Furthermore, the peptide structures are determined using 2D nuclear magnetic resonance (NMR) experiments and the knowledge obtained from MS/MS analysis.


Subject(s)
Conotoxins/chemistry , Conotoxins/chemical synthesis , Disulfides/chemistry , Isomerism
7.
Anal Chem ; 90(5): 3321-3327, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29397705

ABSTRACT

Peptides and proteins carrying high numbers of cysteines can adopt various 3D structures depending on their disulfide connectivities. The unambiguous verification of such conformational isomers with more than two disulfide bonds is extremely challenging, and experimental strategies for their unequivocal structural analysis are largely lacking. We synthesized all 15 possible isomers of the 22mer conopeptide µ-PIIIA and applied 2D NMR spectroscopy and MS/MS for the elucidation of its structure. This study provides intriguing insights in how the disulfide connectivity alters the global fold of a toxin. We also show that analysis procedures involving comprehensive combinations of conventional methods are required for the unambiguous assignment of disulfides in cysteine-rich peptides and proteins and that standard compounds are crucially needed for the structural analysis of such complex molecules.

8.
J Med Chem ; 57(24): 10355-65, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25415134

ABSTRACT

The inhibition of the final step in blood coagulation, the factor XIIIa (FXIIIa) catalyzed cross-linking of fibrin monomers, is currently still a challenge in medicinal chemistry. We report synthesis, recombinant expression, disulfide connectivity, and biological activity of tridegin, the sole existing peptide representative displaying inhibitory activity on FXIIIa. Inhibition of the enzyme by this 66-mer cysteine-rich peptide is mediated by its C-terminal sequence, while the N-terminal part comprises structural information and contributes to inhibitor binding. Either of the production strategies examined leads to the formation of different disulfide-bridged isomers indicating the requirement of the correct fold for inhibitory activity. Molecular modeling and docking studies confirm disulfide bond isomer preference with respect to binding to FXIIIa, in turn, the knowledge of the enzyme-inhibitor interactions might bring about comprehensive ideas for the design of a suitable lead structure for addressing FXIIIa.


Subject(s)
Disulfides/chemistry , Factor XIIIa/antagonists & inhibitors , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/pharmacology , Amino Acid Sequence , Chromatography, High Pressure Liquid , Disulfides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Factor XIIIa/metabolism , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...