Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 743: 140503, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32679489

ABSTRACT

Swales are a widespread stormwater management solution to reduce pollutant concentrations in runoff. An innovative pilot facility was constructed to evaluate the treatment efficiency of the two main types of water-quality swales, i.e. standard swales and filtering swales. Using stormwater roof runoff, without any additions or spiked with organic micropollutants, 12 runoff simulation runs mimicking frequent storm events were discharged longitudinally or laterally over the pilot swales. The performance of each swale was assessed for 4 micropollutants, i.e. zinc (Zn), glyphosate, pyrene and phenanthrene. These substances were mainly found in the dissolved phase of the stormwater runoff used to supply the pilot swales. The standard swale, constructed from a silt loam soil, partially managed stormwater runoff by infiltration. Micropollutant concentration reductions were higher in the infiltrated water (35-85%) than in the overflow (-13-66%). The filtering swale, made of a sandy central part bordered by silt loam embankments, completely managed stormwater runoff by infiltration, providing high micropollutant concentration reductions (65-100%). Mass load reductions were higher for the filtering swale (67-90% for Zn and ≥89% for organic micropollutants) than for the standard swale (33-73% for Zn, 19-67% for glyphosate and ≥50% for both pyrene and phenanthrene). For both swales, lateral inflow was often associated with significantly higher concentration and mass reductions than longitudinal inflow. Consequently, when designing swales for the treatment of micropollutants, practitioners should preferentially promote filtering swales and installations providing lateral diffuse inflow over the facility.

2.
Environ Sci Pollut Res Int ; 26(2): 1287-1302, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30402696

ABSTRACT

Swales are traditional basic open-drainage systems which are able to remove stormwater-borne pollutants. In spite of numerous case studies devoted to their performances, parameters influencing the reduction of pollutant concentrations by swales remain elusive. In order to better characterize them, a database was set up by collecting performance results and design characteristics from 59 swales reported in the literature. Investigations on correlations among pollutant efficiency ratios (ERs) indicated that total trace metals (copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb)), total suspended solids (TSS), total phosphorus (TP), and total Kjeldahl nitrogen (TKN) exhibited many cross-correlated ERs. High ERs were observed for pollutants including a particulate form such as TSS (median ERs = 56%) and total trace metals (median ERs ≥ 62%), suggesting that these pollutants are efficiently trapped by sedimentation in swale bed and/or filtered within swale soil. Medium to high ERs were found for dissolved trace metals (median ERs ≥ 44%), whereas ERs for nutrient species were lower (median ERs ≤ 30%). The inflow concentration was identified as a major factor correlated to ER for most pollutants. For some pollutants, there is also a trend to get higher ER when the geometrical design of the swale increases the hydraulic residence time. Overall, this database may help to better understand swale systems and to optimize their design for improving pollutant removal.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Cadmium , Copper , Databases, Factual , Dust , Environmental Pollutants , Nitrogen , Nutrients , Phosphorus , Soil , Trace Elements , Zinc
3.
Environ Sci Pollut Res Int ; 26(2): 1303, 2019 01.
Article in English | MEDLINE | ID: mdl-30506388

ABSTRACT

The original publication of this paper contains an error. Correct presentation of Equation 1 is presented in this paper.

4.
Environ Sci Pollut Res Int ; 24(34): 26497-26512, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28948446

ABSTRACT

A deep understanding of pollutant buildup and wash-off is essential for accurate urban stormwater quality modeling and for the development of stormwater management practices, knowing the potential adverse impacts of runoff pollution on receiving waters. In the context of quantifying the contribution of airborne pollutants to the contamination of stormwater runoff and assessing the need of developing an integrated AIR-WATER modeling chain, loads of polycyclic aromatic hydrocarbons (PAHs) and metal trace elements (MTEs) are calculated in atmospheric dry deposits, stormwater runoff, and surface dust stock within a small yet highly trafficked urban road catchment (~ 30,000 vehicles per day) near Paris. Despite the important traffic load and according to the current definition of "atmospheric" source, atmospheric deposition did not account for more than 10% of the PAHs and trace metal loads in stormwater samples for the majority of the events, based on the ratio of deposition to stormwater. This result shows that atmospheric deposition is not a major source of pollutants in stormwater, and thus, linking the air and water compartment in a modeling chain to have more accurate estimates of pollutant loads in stormwater runoff might not be relevant. Comparison of road dust with water samples demonstrates that only the fine fraction of the available stock is eroded during a rainfall event. Even if the atmosphere mostly generates fine particles, the existence of other sources of fine particles to stormwater runoff is highlighted.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Metals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rain/chemistry , Water Pollutants, Chemical/analysis , Paris , Urbanization , Water Movements
5.
Environ Sci Pollut Res Int ; 21(16): 9764-76, 2014.
Article in English | MEDLINE | ID: mdl-24764003

ABSTRACT

Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d < 1.9, 1.9 < d < 2.3 g cm(-3)) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d < 1.9, 1.9 < d < 2.3, 2.3 < d < 2.6, and d > 2.8 g cm(-3)) and are mostly in the 2.3 < d < 2.6 g cm(-3) fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.


Subject(s)
Geologic Sediments/chemistry , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Cities , Rain/chemistry , Water/chemistry
6.
Environ Sci Pollut Res Int ; 21(8): 5329-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453012

ABSTRACT

Urban stormwater infiltration basins are designed to hold runoff from impervious surfaces and allow the settling of sediments and associated pollutants. However concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants on groundwater, soils and ecosystems. In this context, sediment characterization represents a key issue for local authorities in terms of management strategies. During the last two decades, several studies were launched including either physical or chemical characterization of stormwater sediments but without real synthesis of data and methods used. Consequently, there is an important need for reviewing the current experimental techniques devoted to the physico-chemical characterization of sediment. The review is based on the outcomes of two experimental sites for which long term monitoring and data collection have been done: the Cheviré basin (near Nantes) and the Django Reinhardt basin (near Lyon). The authors summarize the studies dealing with bulk properties, pollutant contents, their potential mobility and speciation. This paper aims at promoting the significant progresses that were made through a multidisciplinary approach involving multi-scaled and combined experimental techniques.


Subject(s)
Drainage, Sanitary , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Cities , Ecosystem , Environmental Monitoring , France , Fresh Water/chemistry , Groundwater , Hydrology , Rain , Soil
7.
Environ Technol ; 34(9-12): 1255-66, 2013.
Article in English | MEDLINE | ID: mdl-24191459

ABSTRACT

The management of stormwater sediment is a key issue for local authorities due to the pollution load and significant tonnages. In view of reuse, for example for civil engineering, the environmental evaluation of these highly aggregated sediments requires the study of the fractionation and mobility of trace metals. The distribution of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) and their level of lability in three French stormwater sediments was determined using sequential and kinetic extractions (EDTA reagent) associated with mineralogical analysis and scanning electron microscopy observations. Using microanalysis, new data were acquired on the evolution of aggregate state during extractions, and on its significant role in the retention of trace metals. Trace metals were, in particular, observed to be very stable in small aggregates (10-50 microm). Comparison of the two extraction methods revealed that EDTA extraction was not convenient for evaluating the stable fraction of Cr, Ni and Zn. Moreover, the results were relevant for basins presenting similar sources of trace metals, whatever the physicochemical conditions in basins. The results suggest that the management of stormwater sediments could be improved by a better knowledge of metal mobility, as chemical extractions could highlight the localization of the mobile fraction of trace metals. Treatment could be therefore avoided, or specific treatment could be applied to a reduced volume of sediments.


Subject(s)
Chemical Fractionation/methods , Geologic Sediments/chemistry , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Drainage, Sanitary , Hydrology , Kinetics , Metals, Heavy/analysis , Metals, Heavy/chemistry , Rain/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...