Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Soc Trans ; 35(Pt 5): 1100-3, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17956288

ABSTRACT

The NADPH oxidase of 'professional' phagocytic cells transfers electrons across the wall of the phagocytic vacuole, forming superoxide in the lumen. It is generally accepted that this system promotes microbial killing through the generation of reactive oxygen species and through the activity of myeloperoxidase. An alternative scenario exists in which the passage of electrons across the membrane alters the pH and generates a charge that drives ions into, and out of, the vacuole. It is proposed that the primary function of the oxidase is to produce these pH changes and ion fluxes, and the issues surrounding these processes are considered in this review. The neutrophil oxidase is the prototype of a whole family of NOXs (NAPDH oxidases) that exist throughout biology, from plants to humans, which might function, at least in part, in a similar fashion.


Subject(s)
NADPH Oxidases/metabolism , Phagocytes/enzymology , Animals , Cation Transport Proteins/physiology , Humans , Hydrogen-Ion Concentration , Peroxidase/metabolism , Sodium-Hydrogen Exchanger 1 , Sodium-Hydrogen Exchangers/physiology , Species Specificity
2.
J Physiol ; 510 ( Pt 1): 1-18, 1998 Jul 01.
Article in English | MEDLINE | ID: mdl-9625862

ABSTRACT

1. We have expressed recombinant NR1a/NR2A and NR1a/NR2D N-methyl-D-aspartate (NMDA) receptor channels in Xenopus oocytes and made recordings of single-channel and macroscopic currents in outside-out membrane patches. For each receptor type we measured (a) the individual single-channel activations evoked by low glutamate concentrations in steady-state recordings, and (b) the macroscopic responses elicited by brief concentration jumps with high agonist concentrations, and we explore the relationship between these two sorts of observation. 2. Low concentration (5-100 nM) steady-state recordings of NR1a/NR2A and NR1a/NR2D single-channel activity generated shut-time distributions that were best fitted with a mixture of five and six exponential components, respectively. Individual activations of either receptor type were resolved as bursts of openings, which we refer to as 'super-clusters'. 3. During a single activation, NR1a/NR2A receptors were open for 36 % of the time, but NR1a/NR2D receptors were open for only 4 % of the time. For both, distributions of super-cluster durations were best fitted with a mixture of six exponential components. Their overall mean durations were 35.8 and 1602 ms, respectively. 4. Steady-state super-clusters were aligned on their first openings and averaged. The average was well fitted by a sum of exponentials with time constants taken from fits to super-cluster length distributions. It is shown that this is what would be expected for a channel that shows simple Markovian behaviour. 5. The current through NR1a/NR2A channels following a concentration jump from zero to 1 mM glutamate for 1 ms was well fitted by three exponential components with time constants of 13 ms (rising phase), 70 ms and 350 ms (decaying phase). Similar concentration jumps on NR1a/NR2D channels were well fitted by two exponentials with means of 45 ms (rising phase) and 4408 ms (decaying phase) components. During prolonged exposure to glutamate, NR1a/NR2A channels desensitized with a time constant of 649 ms, while NR1a/NR2D channels exhibited no apparent desensitization. 6. We show that under certain conditions, the time constants for the macroscopic jump response should be the same as those for the distribution of super-cluster lengths, though the resolution of the latter is so much greater that it cannot be expected that all the components will be resolvable in a macroscopic current. Good agreement was found for jumps on NR1a/NR2D receptors, and for some jump experiments on NR1a/NR2A. However, the latter were rather variable and some were slower than predicted. Slow decays were associated with patches that had large currents.


Subject(s)
Receptors, N-Methyl-D-Aspartate/physiology , Animals , Electrophysiology , Homeostasis/physiology , Ion Channels/metabolism , Ion Channels/physiology , Isomerism , Oocytes/metabolism , Osmolar Concentration , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins , Time Factors , Xenopus laevis
3.
Proc Biol Sci ; 263(1373): 1079-86, 1996 Aug 22.
Article in English | MEDLINE | ID: mdl-8805841

ABSTRACT

We have investigated the single-channel and whole-cell behaviour of recombinant N-methyl-D-aspartate (NMDA) receptors formed from NR1a and NR2D receptor subunits expressed in Xenopus oocytes. The EC50 for apparent steady-state activation of NR1a/NR2D receptors by glutamate was 450 nM, while extracellular MG2+ produced a voltage-dependent block of glutamate responses with an IC50 of 440 microM at -70 mV. At negative holding potentials glutamate-activated NR1a/NR2D single-channel currents, in 0.85 mM external Ca2+, had slope conductances of 35 pS for the main level, and 17 pS for the sublevel; direct transitions occurred between these two conductance levels. On average 35 pS events had mean open times of 1.01 +/- 0.04 ms, whereas the mean open times of 17 pS events were consistently longer (1.28 +/- 0.06 ms). In 5 mM external Ca2+ the larger conductance level was reduced to 20 pS whereas in Ca(2+)-free solutions it was increased to 50 pS. The frequency of transitions between the main and subconductance levels showed temporal asymmetry: 35-17 pS transitions were more frequent (61%) than 17-35 pS transitions. This asymmetry was not affected by alterations in the external Ca2+ concentration (up to 5 mM). In conclusion, the NR1a/NR2D channel is, like NR1a/NR2C, a 'low conductance' NMDA channel, but it can be distinguished from NR1a/NR2C channels on the basis of transition asymmetry and differences in the open times of its main and sub-conductance levels.


Subject(s)
Ion Channels/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Ion Channels/genetics , Ion Transport , N-Methylaspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus
4.
Proc Biol Sci ; 262(1364): 205-13, 1995 Nov 22.
Article in English | MEDLINE | ID: mdl-8524912

ABSTRACT

Co-expression of wild-type and mutated NMDA NR1 (N598R) subunits in Xenopus oocytes has been used to determine the stoichiometry of the NMDA receptor-channel. When expressed together, wild-type NR2A and mutant NR1 (N598R) subunits produced channels with a main conductance of 2.6 pS and a sublevel of 1.2 pS. These conductances were clearly different from those obtained from wild-type NR1 and wild-type NR2A channels which gave characteristic 50 pS events with a 40 pS sublevel. When wild-type and mutant NR1 subunits were co-expressed together with NR2A subunits a different channel type with a main conductance of 15.2 pS and a sublevel of 11.4 pS was obtained, as well as the 'all wild-type' and 'all mutant' channels described above. These results indicate that there are likely to be two copies of the NR1 subunit in each NMDA receptor complex.


Subject(s)
Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Mutation , Protein Structure, Secondary , Receptors, N-Methyl-D-Aspartate/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus
5.
Proc Biol Sci ; 250(1329): 271-7, 1992 Dec 22.
Article in English | MEDLINE | ID: mdl-1283639

ABSTRACT

To cast light on the subunit composition of native NMDA-type glutamate receptors, four cloned subunits of the NMDA receptor have been expressed, in pairs, in Xenopus oocytes, and their single-channel properties have been measured. The conductances of the channels, and their characteristic patterns of sublevel transitions, turn out to be useful diagnostic criteria for subunit composition. The NR1-NR2A and NR1-NR2B combinations (which have identical TM2 sequences) are very similar to each other. Both have 50 pS openings and brief 40 pS sublevels (in 1 mM external Ca2+), with similar mean lifetimes and frequencies. They also show close quantitative resemblance to the channels of hippocampal CA1 and dentate gyrus cells and of cerebellar granule cells, except that the NR1-NR2A combination has a lower glycine sensitivity than the native channels. In contrast, the NR1-NR2C combination produces a channel with 36 pS and 19 pS conductances of similar (brief) duration; these closely resemble the 38-18 pS channels that have previously been observed in large cerebellar neurons in culture (together with 50 pS channels).


Subject(s)
Cerebellum/physiology , Hippocampus/physiology , Ion Channels/physiology , Oocytes/physiology , Receptors, Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Recombinant Proteins/metabolism , Animals , Cloning, Molecular , DNA/genetics , Electric Conductivity , Female , Macromolecular Substances , Membrane Potentials , Oocytes/drug effects , Pyramidal Tracts/physiology , Rats , Receptors, Glutamate/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus laevis
6.
Pflugers Arch ; 422(2): 120-8, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1488272

ABSTRACT

The M current, IM, a voltage-dependent non-inactivating K+ current, was recorded in NG108-15 neuroblastoma x glioma hybrid cells, using the whole-cell mode of the patch-clamp technique. We studied the effect of arachidonic acid, other fatty acids and inhibitors of the arachidonic acid metabolism. In relatively high concentrations (25-50 microM) arachidonic acid first increased and later decreased the current, Ih, which holds the membrane potential at -30 mV and mainly flows through open M channels. It shifted the midpoint potential, Vo, of the relation between M conductance, gM, and membrane potential, V, to more negative values and decreased the maximum conductance gM and the time constant tau M. In smaller concentrations (5-10 microM) arachidonic acid merely decreased Ih and gM with little effect on Vo and tau M. Eicosatetraynoic acid and docosahexaenoic acid acted similarly to arachidonic acid whereas stearic acid had no effect. Of the three enzyme inhibitors studied, nordihydroguaiaretic acid acted similarly to arachidonic acid. i.e. caused a biphasic change in Ih. Indomethacin and quinacrine caused, respectively, a pure increase and a pure decrease of Ih and gM. Possible explanations are build-up of internally produced arachidonic acid, depletion of eicosanoid products or an inhibitory effect unrelated to arachidonic acid metabolism.


Subject(s)
Arachidonic Acid/pharmacology , Glioma/physiopathology , Neuroblastoma/physiopathology , Arachidonic Acid/metabolism , Electric Conductivity , Enzyme Inhibitors/pharmacology , Fatty Acids/pharmacology , Glioma/enzymology , Glioma/pathology , Hybrid Cells/physiology , Neuroblastoma/enzymology , Neuroblastoma/pathology , Tumor Cells, Cultured
7.
Proc Natl Acad Sci U S A ; 88(20): 9365-9, 1991 Oct 15.
Article in English | MEDLINE | ID: mdl-1924400

ABSTRACT

The topology of the tight junction is probed by introducing dipicrylamine (dpa-), a lipid-soluble anion, into the membranes of hepatocyte pairs in culture. Once partitioned into the membrane, dpa- ions are free to move in the hydrophobic core of the membrane, where their mobile charges greatly increase membrane capacitance. If tight junctions are lines of membrane fusion, dpa- will cross the tight junction without traversing a polar headgroup layer. Furthermore, the electric potential across the tight junction will be equal to the difference in membrane potentials of the two cells. dpa- can therefore be expected to move electrophoretically from cell membrane to cell membrane across the junction in response to an intercellular voltage difference. Experiments performed under double whole-cell clamp show that this transfer occurs as follows: First, dpa- causes an intercellular current unrelated to gap junctions to flow in response to an intercellular voltage difference. Second, this electrophoretic removal or addition of dpa- from a cell's membrane through the tight junction must reduce or increase its dpa- content and thus its capacitance. Experiments confirm this prediction: We detect rapid, symmetric, and reversible changes in membrane capacitance in response to changes in the membrane potential of the neighboring cell. Finally, we find that hepatocyte membranes contain a negatively charged endogenous molecule that contain a negatively charged endogenous molecule that can move from cell to cell like dpa- under the influence of an intercellular potential difference. We conclude that membrane fusion occurs at tight junctions and that this hydrophobic intercellular pathway can play a role in intercellular communication.


Subject(s)
Intercellular Junctions/physiology , Liver/physiology , Picrates/pharmacology , Animals , Cell Membrane/physiology , Cells, Cultured , Electric Conductivity/drug effects , Electrophysiology/methods , Intercellular Junctions/drug effects , Mice , Models, Biological , Valinomycin/pharmacology
8.
Pflugers Arch ; 418(6): 581-91, 1991 Jul.
Article in English | MEDLINE | ID: mdl-1945751

ABSTRACT

The M current, IM, a voltage-dependent non-inactivating K current, was recorded in NG108-15 neuroblastoma x glioma hybrid cells, using the whole-cell mode of the patch-clamp technique. We studied inhibition of the M current by bradykinin, phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC), and methylxanthines. Focal application of 0.1-5 microM bradykinin inhibited IM by about 60%; 5 nM bradykinin inhibited by about 40%. Bath application of 0.1 microM and 1 microM PDBu diminished IM to about half of the control value. Staurosporine, a PKC inhibitor, applied for 35-43 min in a concentration of 0.3 microM significantly reduced the effect of 1 microM PDBu. M current blockage by PDBu could be partly reversed by bath application of H-7 (51-64 microM), another PKC inhibitor. These observations suggest that the PDBu effect is really due to activation of PKC. The findings are compatible with the view [Brown DA, Higashida H (1988) J Physiol (Lond) 397:185-207] that the bradykinin effect on IM is mediated by PKC. However, three further observations suggest that this is only true for part of the bradykinin effect. When the suppression of IM by 1 microM PDBu was fully developed, 0.1 microM bradykinin produced a further inhibition of IM. Down-regulation of PKC by long-term treatment with PDBu reduced the effect of 0.1 microM bradykinin significantly but did not abolish it. Staurosporine (0.3 microM, applied for 31-46 min) failed to reduce the effect of 5 nM bradykinin significantly. The M current could be reversibly blocked by methylxanthines (caffeine, isobutyl-methylxanthine, theophylline) in the millimolar range, probably because of a direct action on the M channels.


Subject(s)
Potassium/metabolism , Alkaloids/pharmacology , Animals , Bradykinin/pharmacology , Hybrid Cells/drug effects , Hybrid Cells/metabolism , Membrane Potentials/drug effects , Phorbol 12,13-Dibutyrate/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Staurosporine , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Xanthines/pharmacology
9.
J Gen Physiol ; 96(5): 1061-84, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2280253

ABSTRACT

Taste buds were isolated from the fungiform papilla of the rat tongue and the receptor cells (TRCs) were patch clamped. Seals were obtained on the basolateral membrane of 281 TRCs, protruding from the intact taste buds or isolated by micro-dissection. In whole-cell configuration 72% of the cells had a TTX blockable transient Na inward current (mean peak amplitude 0.74 nA). All cells had outward K currents. Their activation was slower than for the Na current and a slow inactivation was also noticeable. The K currents were blocked by tetraethylammonium, Ba, and 4-aminopyridine, and were absent when the pipette contained Cs instead of K. With 100 mM Ba or 100 mM Ca in the bath, two types of inward current were observed. An L-type Ca current (ICaL) activated at -20 mV had a mean peak amplitude of 440 pA and inactivated very slowly. At 3 mM Ca the activation threshold of ICaL was near -40 mV. A transient T-type current (ICaT) activated at -50 mV had an average peak amplitude of 53 pA and inactivated with a time constant of 36 ms at -30 mV. ICaL was blocked more efficiently by Cd and D600 than ICaT. ICaT was blocked by 0.2 mM Ni and half blocked by 200 microM amiloride. In whole-cell voltage clamp, Na-saccharin caused (in 34% of 55 cells tested) a decrease in outward K currents by 21%, which may be expected to depolarize the TRCs. Also, Na-saccharin caused some taste cells to fire action potentials (on-cell, 7 out of 24 cells; whole-cell, 2 out of 38 cells responding to saccharin) of amplitudes sufficient to activate ICaL. Thus the action potentials will cause Ca inflow, which may trigger release of transmitter.


Subject(s)
Calcium/metabolism , Potassium/metabolism , Taste Buds/metabolism , Action Potentials/drug effects , Animals , Female , In Vitro Techniques , Membrane Potentials , Rats , Rats, Inbred Strains , Saccharin/pharmacology , Sodium/metabolism , Taste Buds/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...