Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1893: 153-166, 2019.
Article in English | MEDLINE | ID: mdl-30565133

ABSTRACT

The YAP protein is a co-transcription factor increasing the expression of genes involved in cell proliferation and repressing the expression of genes important for cell differentiation and apoptosis. It is regulated by several inputs, like the Hippo pathway, through the action of kinases that phosphorylate YAP on several residues. The level of phosphorylation of the residues serine 127 (S127) of YAP is generally assessed in cellular models, native tissues, and organs, as a marker of YAP activity and location, and is regulated by numerous partners. This phosphorylation event is classically detected using a western blot technical approach. Here, we describe a novel approach to detect both the relative amount of total YAP (T-YAP assay) and the phosphorylation of the residue S127 of YAP (S127-P-YAP assay) using a HTRF®-based method. This easy-to-run method can easily be miniaturized and allows for a high-throughput analysis in 96/384-well plate format, requiring less cellular material and being more rapid than other approaches.


Subject(s)
Biological Assay , Nuclear Proteins/metabolism , Serine/metabolism , Transcription Factors/metabolism , Biological Assay/methods , Biological Assay/standards , Cell Cycle Proteins , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Transport , Sensitivity and Specificity , Signal Transduction
2.
ACS Chem Biol ; 13(8): 1921-1931, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29927572

ABSTRACT

The Polo-like kinases (Plks) are an evolutionary conserved family of Ser/Thr protein kinases that possess, in addition to the classical kinase domain at the N-terminus, a C-terminal polo-box domain (PBD) that binds to phosphorylated proteins and modulates the kinase activity and its localization. Plk1, which regulates the formation of the mitotic spindle, has emerged as a validated drug target for the treatment of cancer, because it is required for numerous types of cancer cells but not for the cell division in noncancer cells. Here, we employed chemical biology methods to investigate the allosteric communication between the PBD and the catalytic domain of Plk1. We identified small compounds that bind to the catalytic domain and inhibit or enhance the interaction of Plk1 with the phosphorylated peptide PoloBoxtide in vitro. In cells, two new allosteric Plk1 inhibitors affected the proliferation of cancer cells in culture and the cell cycle but had distinct phenotypic effects on spindle formation. Both compounds inhibited Plk1 signaling, indicating that they specifically act on Plk1 in cultured cells.


Subject(s)
Cell Cycle Proteins/agonists , Cell Cycle Proteins/antagonists & inhibitors , Enzyme Activators/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/agonists , Proto-Oncogene Proteins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Allosteric Regulation/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Catalytic Domain , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Centrosome/metabolism , Enzyme Activators/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , Kinetochores/metabolism , Oligopeptides/chemistry , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Small Molecule Libraries/pharmacology , Spodoptera/chemistry , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...