Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Oncol ; 13: 1130048, 2023.
Article in English | MEDLINE | ID: mdl-37305585

ABSTRACT

Background: Despite the significant advances in the management of advanced prostate cancer (PCa), metastatic PCa is currently considered incurable. For further investigations in precision treatment, the development of preclinical models representing the complex prostate tumor heterogeneity are mandatory. Accordingly, we aimed to establish a resource of patient-derived xenograft (PDX) models that exemplify each phase of this multistage disease for accurate and rapid evaluation of candidate therapies. Methods: Fresh tumor samples along with normal corresponding tissues were obtained directly from patients at surgery. To ensure that the established models reproduce the main features of patient's tumor, both PDX tumors at multiple passages and patient's primary tumors, were processed for histological characteristics. STR profile analyses were also performed to confirm patient identity. Finally, the responses of the PDX models to androgen deprivation, PARP inhibitors and chemotherapy were also evaluated. Results: In this study, we described the development and characterization of 5 new PDX models of PCa. Within this collection, hormone-naïve, androgen-sensitive and castration-resistant (CRPC) primary tumors as well as prostate carcinoma with neuroendocrine differentiation (CRPC-NE) were represented. Interestingly, the comprehensive genomic characterization of the models identified recurrent cancer driver alterations in androgen signaling, DNA repair and PI3K, among others. Results were supported by expression patterns highlighting new potential targets among gene drivers and the metabolic pathway. In addition, in vivo results showed heterogeneity of response to androgen deprivation and chemotherapy, like the responses of patients to these treatments. Importantly, the neuroendocrine model has been shown to be responsive to PARP inhibitor. Conclusion: We have developed a biobank of 5 PDX models from hormone-naïve, androgen-sensitive to CRPC primary tumors and CRPC-NE. Increased copy-number alterations and accumulation of mutations within cancer driver genes as well as the metabolism shift are consistent with the increased resistance mechanisms to treatment. The pharmacological characterization suggested that the CRPC-NE could benefit from the PARP inhibitor treatment. Given the difficulties in developing such models, this relevant panel of PDX models of PCa will provide the scientific community with an additional resource for the further development of PDAC research.

2.
Front Oncol ; 12: 930731, 2022.
Article in English | MEDLINE | ID: mdl-36033544

ABSTRACT

Background: Muscle-invasive bladder cancer (MIBC) and upper urinary tract urothelial carcinoma (UTUC) are molecularly heterogeneous. Despite chemotherapies, immunotherapies, or anti-fibroblast growth factor receptor (FGFR) treatments, these tumors are still of a poor outcome. Our objective was to develop a bank of patient-derived xenografts (PDXs) recapitulating the molecular heterogeneity of MIBC and UTUC, to facilitate the preclinical identification of therapies. Methods: Fresh tumors were obtained from patients and subcutaneously engrafted into immune-compromised mice. Patient tumors and matched PDXs were compared regarding histopathology, transcriptomic (microarrays), and genomic profiles [targeted Next-Generation Sequencing (NGS)]. Several PDXs were treated with chemotherapy (cisplatin/gemcitabine) or targeted therapies [FGFR and epidermal growth factor (EGFR) inhibitors]. Results: A total of 31 PDXs were established from 1 non-MIBC, 25 MIBC, and 5 upper urinary tract tumors, including 28 urothelial (UC) and 3 squamous cell carcinomas (SCCs). Integrated genomic and transcriptomic profiling identified the PDXs of three different consensus molecular subtypes [basal/squamous (Ba/Sq), luminal papillary, and luminal unstable] and included FGFR3-mutated PDXs. High histological and genomic concordance was found between matched patient tumor/PDX. Discordance in molecular subtypes, such as a Ba/Sq patient tumor giving rise to a luminal papillary PDX, was observed (n=5) at molecular and histological levels. Ten models were treated with cisplatin-based chemotherapy, and we did not observe any association between subtypes and the response. Of the three Ba/Sq models treated with anti-EGFR therapy, two models were sensitive, and one model, of the sarcomatoid variant, was resistant. The treatment of three FGFR3-mutant PDXs with combined FGFR/EGFR inhibitors was more efficient than anti-FGFR3 treatment alone. Conclusions: We developed preclinical PDX models that recapitulate the molecular heterogeneity of MIBCs and UTUC, including actionable mutations, which will represent an essential tool in therapy development. The pharmacological characterization of the PDXs suggested that the upper urinary tract and MIBCs, not only UC but also SCC, with similar molecular characteristics could benefit from the same treatments including anti-FGFR for FGFR3-mutated tumors and anti-EGFR for basal ones and showed a benefit for combined FGFR/EGFR inhibition in FGFR3-mutant PDXs, compared to FGFR inhibition alone.

3.
Nat Commun ; 10(1): 253, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651555

ABSTRACT

The upregulation of PPARγ/RXRα transcriptional activity has emerged as a key event in luminal bladder tumors. It renders tumor cell growth PPARγ-dependent and modulates the tumor microenvironment to favor escape from immuno-surveillance. The activation of the pathway has been linked to PPARG gains/amplifications resulting in PPARγ overexpression and to recurrent activating point mutations of RXRα. Here, we report recurrent mutations of PPARγ that also activate the PPARγ/RXRα pathway, conferring PPARγ-dependency and supporting a crucial role of PPARγ in luminal bladder cancer. These mutations are found throughout the protein-including N-terminal, DNA-binding and ligand-binding domains-and most of them enhance protein activity. Structure-function studies of PPARγ variants with mutations in the ligand-binding domain allow identifying structural elements that underpin their gain-of-function. Our study reveals genomic alterations of PPARG that lead to pro-tumorigenic PPARγ/RXRα pathway activation in luminal bladder tumors and may open the way towards alternative options for treatment.


Subject(s)
PPAR gamma/genetics , Retinoid X Receptor alpha/genetics , Signal Transduction/genetics , Urinary Bladder Neoplasms/genetics , Cell Line, Tumor , Cohort Studies , Crystallography, X-Ray , Female , Gain of Function Mutation , HEK293 Cells , Humans , Male , Molecular Dynamics Simulation , PPAR gamma/chemistry , PPAR gamma/metabolism , Protein Interaction Domains and Motifs/genetics , Retinoid X Receptor alpha/metabolism , Sequence Analysis, DNA , Structure-Activity Relationship , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology
4.
Oncogene ; 38(1): 60-72, 2019 01.
Article in English | MEDLINE | ID: mdl-30076415

ABSTRACT

Metastatic clear cell renal cell carcinoma (CCC) remains incurable despite advances in the development of anti-angiogenic targeted therapies and the emergence of immune checkpoint inhibitors. We have previously shown that the sonic hedgehog-Gli signaling pathway is oncogenic in CCC allowing us to identify the developmental Lim1 transcription factor as a Gli target and as a new oncogene in CCC regulating cell proliferation and apoptosis, and promoting tumor growth. In this previous study, preliminary in vitro results also suggested that Lim1 may be implicated in metastatic spread. Here we investigated the potential pro-metastatic role of Lim1 in advanced CCC (1) in vitro using a panel of CCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene either naturally or by gene transfer and (2) ex vivo in 30 CCC metastatic tissues, including lymph nodes, lung, skin, bone, and adrenal metastases, and (3) in vivo, using a metastatic model by intravenous injection of siRNA-transfected cells into Balb/c nude. Our in vitro results reveal that Lim1 knockdown time-dependently decreased CCC cell motility, migration, invasion, and clonogenicity by up to 50% regardless of their VHL status. Investigating the molecular machinery involved in these processes, we identified a large panel of Lim1 targets known to be involved in cell adhesion (paxillin and fibronectin), epithelial-mesenchymal transition (Twist1/2 and snail), invasion (MMP1/2/3/8/9), and metastatic progression (CXCR4, SDF-1, and ANG-1). Importantly, Lim1 was found constitutively expressed in all metastatic tissues. The H-score in metastatic tissues being significantly superior to the score in the corresponding primary tumor tissues (P value = 0.009). Furthermore, we showed that Lim1 silencing decreases pulmonary metastasis development in terms of number and size in the in vivo metastatic model of human CCC. Taken together, these experiments strengthen the potential therapeutic value of Lim1 targeting as a promising novel approach for treating metastatic human CCC.


Subject(s)
Carcinoma, Renal Cell/secondary , Kidney Neoplasms/therapy , LIM-Homeodomain Proteins/antagonists & inhibitors , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Oncogenes , RNA Interference , RNA, Small Interfering/therapeutic use , Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kidney Neoplasms/genetics , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/physiology , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , RNA, Small Interfering/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/physiology , Von Hippel-Lindau Tumor Suppressor Protein/physiology
5.
EMBO Mol Med ; 10(4)2018 04.
Article in English | MEDLINE | ID: mdl-29463565

ABSTRACT

FGFR3 alterations (mutations or translocation) are among the most frequent genetic events in bladder carcinoma. They lead to an aberrant activation of FGFR3 signaling, conferring an oncogenic dependence, which we studied here. We discovered a positive feedback loop, in which the activation of p38 and AKT downstream from the altered FGFR3 upregulates MYC mRNA levels and stabilizes MYC protein, respectively, leading to the accumulation of MYC, which directly upregulates FGFR3 expression by binding to active enhancers upstream from FGFR3 Disruption of this FGFR3/MYC loop in bladder cancer cell lines by treatment with FGFR3, p38, AKT, or BET bromodomain inhibitors (JQ1) preventing MYC transcription decreased cell viability in vitro and tumor growth in vivo A relevance of this loop to human bladder tumors was supported by the positive correlation between FGFR3 and MYC levels in tumors bearing FGFR3 mutations, and the decrease in FGFR3 and MYC levels following anti-FGFR treatment in a PDX model bearing an FGFR3 mutation. These findings open up new possibilities for the treatment of bladder tumors displaying aberrant FGFR3 activation.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 3/metabolism , Urinary Bladder Neoplasms/metabolism , Azepines/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Signal Transduction/drug effects , Triazoles/therapeutic use , Urinary Bladder Neoplasms/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Am J Pathol ; 188(4): 863-875, 2018 04.
Article in English | MEDLINE | ID: mdl-29353060

ABSTRACT

Proliferative glomerulonephritis is characterized by local inflammation and mesangial cell deterioration, followed by mesangial proliferation and glomerular healing. Parathyroid hormone-related peptide (PTHrP) is a mesangial cytokine-like growth factor implicated in mesangial proliferation and survival. No data are available about its role in glomerulonephritis. Herein, we analyzed the expression and role of PTHrP in glomerular inflammation and healing in an experimental model of glomerulonephritis induced by i.v. injection of Habu snake venom in mice. The temporal analysis showed marked renal damage in the first days after venom injection and the beginning of recovery within 7 days. Glomerular expression of PTHrP (transcript and protein) was observed in the early phase after venom injection (from day 1 to day 3), along with an inflammatory environment. The inactivation of secreted PTHrP with PTHrP-neutralizing antibody (PTH2E11; 120 µg i.p. daily) reduced the markers of local inflammation (expression of macrophage chemotactic protein-1; regulated upon activation, normal T cell expressed and secreted; cyclooxygenase 2; IL-6; and macrophage infiltration) and abolished the expression of PTHrP itself. Moreover, the glomerular cell proliferation was hampered, and the healing process was prevented on day 7 after venom injection. These results show that PTHrP has antinomic actions in glomerulonephritis, participating in both the proinflammatory condition and the healing process. Our work reveals the essential role of PTHrP in early glomerular repair in an experimental model of glomerulonephritis.


Subject(s)
Glomerulonephritis/chemically induced , Glomerulonephritis/metabolism , Parathyroid Hormone-Related Protein/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Cell Proliferation/drug effects , Creatinine/blood , Crotalid Venoms/administration & dosage , Glomerulonephritis/blood , Glomerulonephritis/pathology , Inflammation/pathology , Injections , Kidney Glomerulus/pathology , Male , Mice, Inbred C57BL , Trimeresurus
7.
Am J Physiol Cell Physiol ; 314(2): C242-C253, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29141920

ABSTRACT

Injury of mesangial cells (MC) is a prominent feature of glomerulonephritis. Activated MC secrete inflammatory mediators that induce cell apoptosis. Parathyroid hormone-related peptide (PTHrP) is a locally active cytokine that enhances cell survival and is upregulated by proinflammatory factors in many cell types. The aim of this study was to analyze the regulation of PTHrP expression by inflammatory cytokines and to evaluate whether PTHrP itself acts as a proinflammatory and/or survival factor on male murine MC in primary culture. Our results showed that IL-1ß (10 ng/ml) and TNF-α (10 ng/ml) rapidly and transiently upregulated PTHrP expression in MC. The effects of IL-1ß were both transcriptional and posttranscriptional, with stabilization of the PTHrP mRNA by human antigen R (HuR). Proteome profiler arrays showed that PTHrP itself enhanced cytokines within 2 h in cell lysates, mainly IL-17, IL-16, IL-1α, and IL-6. PTHrP also stimulated sustained expression (2-4 h) of chemokines, mainly regulated upon activation normal T cell expressed and secreted (RANTES)/C-C motif chemokine 5 (CCL5) and macrophage inflammatory protein-2 (MIP-2)/C-X-C motif chemokine 2 (CXCL2), thymus and activation-regulated chemokine (TARC)/CCL17, and interferon-inducible T cell α-chemoattractant (I-TAC)/CXCL11. Moreover, PTHrP markedly enhanced cyclooxygenase-2 (COX-2) expression and elicited its autoinduction through the activation of the NF-κB pathway. PTHrP induced MC survival via the COX-2 products, and PTHrP overexpression in MC blunted the apoptotic effects of IL-1ß and TNF-α. Altogether, these findings suggest that PTHrP functions as a booster of glomerular inflammatory processes and may be a negative feedback loop preserving MC survival.


Subject(s)
Apoptosis/drug effects , Cyclooxygenase 2/metabolism , Glomerulonephritis/enzymology , Inflammation Mediators/metabolism , Interleukin-1beta/pharmacology , Mesangial Cells/drug effects , Parathyroid Hormone-Related Protein/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cells, Cultured , Glomerulonephritis/genetics , Glomerulonephritis/pathology , Male , Mesangial Cells/enzymology , Mesangial Cells/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Parathyroid Hormone-Related Protein/genetics , Parathyroid Hormone-Related Protein/pharmacology , Peptide Fragments/pharmacology , Signal Transduction/drug effects , Time Factors , Up-Regulation
8.
Oncotarget ; 7(37): 59336-59359, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27449081

ABSTRACT

The objective of the present work was to establish a large panel of preclinical models of human renal cell carcinoma (RCC) directly from patients, faithfully reproducing the biological features of the original tumor. RCC tissues (all stages/subtypes) were collected for 8 years from 336 patients undergoing surgery, xenografted subcutaneously in nude mice, and serially passaged into new mice up to 13 passages. Tissue samples from the primary tumor and tumors grown in mice through passages were analyzed for biological tissue stability by histopathology, mRNA profiling, von Hippel-Lindau gene sequencing, STR fingerprinting, growth characteristics and response to current therapies. Metastatic models were also established by orthotopic implantation and analyzed by imagery. We established a large panel of 30 RCC models (passage > 3, 8.9% success rate). High tumor take rate was associated with high stage and grade. Histopathologic, molecular and genetic characteristics were preserved between original tumors and case-matched xenografts. The models reproduced the sensitivity to targeted therapies observed in the clinic. Overall, these models constitute an invaluable tool for the clinical design of efficient therapies, the identification of predictive biomarkers and translational research.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Disease Models, Animal , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Neoplasm Transplantation
9.
Int J Cancer ; 137(7): 1549-59, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25809490

ABSTRACT

Human conventional renal cell carcinoma (CCC) remains resistant to current therapies. Focal Adhesion Kinase (FAK) is upregulated in many epithelial tumors and clearly implicated in nearly all facets of cancer. However, only few reports have assessed whether FAK may be associated with renal tumorigenesis. In this study, we investigated the potential role of FAK in the growth of human CCC using a panel of CCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as normal/tumoral renal tissue pairs. FAK was found constitutively expressed in human CCC both in culture cells and freshly harvested tumors obtained from patients. We showed that CCC cell growth was dramatically reduced in FAK-depleted cells or after FAK inhibition with various inhibitors and this effect was obtained through inhibition of cell proliferation and induction of cell apoptosis. Additionally, our results indicated that FAK knockdown decreased CCC cell migration and invasion. More importantly, depletion or pharmacological inhibition of FAK substantially inhibited tumor growth in vivo. Interestingly, investigations of the molecular mechanism revealed loss of FAK phosphorylation during renal tumorigenesis impacting multiple signaling pathways. Taken together, our findings reveal a previously uncharacterized role of FAK in CCC whereby FAK exerts oncogenic properties through a non canonical signaling pathway involving its scaffolding kinase-independent properties. Therefore, targeting the FAK scaffold may represent a promising approach for developing innovative and highly specific therapies in human CCC.


Subject(s)
Carcinoma, Renal Cell/therapy , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/deficiency , Kidney Neoplasms/therapy , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Renal Cell/enzymology , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Heterografts , Humans , Kidney Neoplasms/enzymology , Kidney Neoplasms/pathology , Mice , Phosphorylation , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Von Hippel-Lindau Tumor Suppressor Protein/biosynthesis , Von Hippel-Lindau Tumor Suppressor Protein/genetics
10.
Carcinogenesis ; 33(11): 2084-93, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22843547

ABSTRACT

Human clear cell renal cell carcinoma (CCC) remains resistant to treatments despite the progress in targeted therapies. Several signaling pathways acting during renal development are reactivated during kidney tumorigenesis; this is the case of the sonic hedgehog (SHH)-Gli. Interestingly, the precursor of active vitamin D3 (VD3), cholecalciferol, has been demonstrated to be a strong inhibitor of SHH-Gli signaling. Here, we show the preclinical efficacy of cholecalciferol in CCC both in vitro and in vivo. A panel of CCC cell lines, tumors and normal corresponding tissues from CCC patients were used to evaluate the expression of the VD3 receptor and metabolizing enzymes and the effects of cholecalciferol treatment. Subsequently, xenografted mice were treated with cholecalciferol in a prophylactic or therapeutic manner; their response and the adverse effects were evaluated on the basis of weekly monitoring, followed by blood collection procedures and X-ray micro-computed tomography. VD3 receptor and metabolizing enzymes are dramatically decreased in human cell lines and tumors. Cholecalciferol decreases cell proliferation and increases cell death by inhibition of the SHH-Gli pathway. Xenografted mice treated with cholecalciferol exhibit absence of tumor development or substantial growth inhibition. The treatment was shown to be safe; it did not induce calcification or calcium reabsorption. These findings establish that, although VD3 receptors and metabolizing enzymes are absent in CCC, cholecalciferol supplementation is a strong tool to block the reactivation of SHH-Gli pathway in this pathology, leading ultimately to tumor regression. Cholecalciferol may have highly therapeutic potential in CCC.


Subject(s)
Carcinoma, Renal Cell/prevention & control , Cholecalciferol/pharmacology , Hedgehog Proteins/metabolism , Kidney Neoplasms/prevention & control , Signal Transduction/drug effects , Transcription Factors/metabolism , Animals , Blotting, Western , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Communication/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Hedgehog Proteins/genetics , Humans , Immunoenzyme Techniques , Kidney/metabolism , Kidney/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mice , Mice, Nude , Proteome/analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Smoothened Receptor , Transcription Factors/genetics , Tumor Cells, Cultured , X-Ray Microtomography , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL
...