Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 240(7): e14162, 2024 07.
Article in English | MEDLINE | ID: mdl-38741523

ABSTRACT

AIM: In cyclic climate variations, including seasonal changes, many animals regulate their energy demands to overcome critical transitory moments, restricting their high-demand activities to phases of resource abundance, enabling rapid growth and reproduction. Tegu lizards (Salvator merianae) are ectotherms with a robust annual cycle, being active during summer, hibernating during winter, and presenting a remarkable endothermy during reproduction in spring. Here, we evaluated whether changes in mitochondrial respiratory physiology in skeletal muscle could serve as a mechanism for the increased thermogenesis observed during the tegu's reproductive endothermy. METHODS: We performed high-resolution respirometry and calorimetry in permeabilized red and white muscle fibers, sampled during summer (activity) and spring (high activity and reproduction), in association with citrate synthase measurements. RESULTS: During spring, the muscle fibers exhibited increased oxidative phosphorylation. They also enhanced uncoupled respiration and heat production via adenine nucleotide translocase (ANT), but not via uncoupling proteins (UCP). Citrate synthase activity was higher during the spring, suggesting greater mitochondrial density compared to the summer. These findings were consistent across both sexes and muscle types (red and white). CONCLUSION: The current results highlight potential cellular thermogenic mechanisms in an ectothermic reptile that contribute to transient endothermy. Our study indicates that the unique feature of transitioning to endothermy through nonshivering thermogenesis during the reproductive phase may be facilitated by higher mitochondrial density, function, and uncoupling within the skeletal muscle. This knowledge contributes significant elements to the broader picture of models for the evolution of endothermy, particularly in relation to the enhancement of aerobic capacity.


Subject(s)
Lizards , Muscle, Skeletal , Reproduction , Animals , Lizards/physiology , Lizards/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Reproduction/physiology , Thermogenesis/physiology , Female , Male , Seasons , Mitochondria, Muscle/metabolism , Energy Metabolism/physiology
2.
J Exp Biol ; 225(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35098314

ABSTRACT

The febrile response to resist a pathogen is energetically expensive, while regulated hypothermia seems to preserve energy for vital functions. We hypothesized here that immune-challenged birds facing metabolic trade-offs (reduced energy supply/increased energy demand) favor a regulated hypothermic response at the expense of fever. To test this hypothesis, we compared 5 day old broiler chicks exposed to fasting, cold (25°C), and fasting combined with cold with a control group fed under thermoneutral conditions (30°C). The chicks were injected with saline or with a high dose of endotoxin known to induce a biphasic thermal response composed of a drop in body temperature (Tb) followed by fever. Then Tb, oxygen consumption (metabolic rate), peripheral vasomotion (cutaneous heat exchange), breathing frequency (respiratory heat exchange) and huddling behavior (heat conservation indicator) were analyzed. Irrespective of metabolic trade-offs, chicks presented a transient regulated hypothermia in the first hour, which relied on a suppressed metabolic rate for all groups, increased breathing frequency for chicks fed/fasted at 30°C, and peripheral vasodilation in chicks fed/fasted at 25°C. Fever was observed only in chicks kept at thermoneutrality and was supported by peripheral vasoconstriction and huddling behavior. Fed and fasted chicks at 25°C completely eliminated fever despite the ability to increase metabolic rate for thermogenesis in the phase correspondent to fever when it was pharmacologically induced by 2,4-dinitrophenol. Our data suggest that increased competing demands affect chicks' response to an immune challenge, favoring regulated hypothermia to preserve energy while the high costs of fever to resist a pathogen are avoided.


Subject(s)
Hypothermia , Animals , Body Temperature , Chickens , Fasting/physiology , Fever/veterinary
3.
J Physiol ; 599(11): 2969-2986, 2021 06.
Article in English | MEDLINE | ID: mdl-33823064

ABSTRACT

KEY POINTS: The costs associated with immune and thermal responses may exceed the benefits to the host during severe inflammation. In this case, regulated hypothermia instead of fever can occur in rodents as a beneficial strategy to conserve energy for vital functions with consequent tissue protection and hypoxia prevention. We tested the hypothesis that this phenomenon is not exclusive to mammals, but extends to the other endothermic group, birds. A decrease in metabolic rate without any failure in mitochondrial respiration, nor oxygen delivery, is the main evidence supporting the regulated nature of endotoxin-induced hypothermia in chicks. Thermolytic mechanisms such as tachypnea and cutaneous vasodilatation can also be recruited to facilitate body temperature decrease under lipopolysaccharide treatment, especially in the cold. Our findings bring a new perspective for evolutionary medicine studies on energy trade-off in host defence because regulated hypothermia may be a phenomenon spread among vertebrates facing a severe immune challenge. ABSTRACT: A switch from fever to regulated hypothermia can occur in mammals under circumstances of reduced physiological fitness (e.g. sepsis) to direct energy to defend vital systems. Birds in which the cost to resist a pathogen is additive to the highest metabolic rate and body temperature (Tb ) among vertebrates may also benefit from regulated hypothermia during systemic inflammation. Here, we show that the decrease in Tb observed during an immune challenge in birds is a regulated hypothermia, and not a result of metabolic failure. We investigated O2 consumption (thermogenesis index), ventilation (respiratory heat loss), skin temperature (sensible heat loss) and muscle mitochondrial respiration (thermogenic tissue) during Tb fall in chicken chicks challenged with endotoxin [lipopolysaccharide (LPS)]. Chicks injected with LPS were also tested regarding the capacity to raise O2 consumption to meet an increased demand driven by 2,4-dinitrophenol. LPS decreased Tb and the metabolic rate of chicks without affecting muscle uncoupled, coupled and non-coupled mitochondrial respiration. LPS-challenged chicks were indeed capable of increasing metabolic rate in response to 2,4-dinitrophenol, indicating no O2 delivery limitation. Additionally, chicks did not attempt to prevent Tb from falling during hypothermia but, instead, activated cutaneous and respiratory thermolytic mechanisms, providing an additional cooling force. These data provide the first evidence of the regulated nature of the hypothermic response to endotoxin in birds. Therefore, it changes the current understanding of bird's thermoregulation during severe inflammation, indicating that regulated hypothermia is either a convergent trait for endotherms or a conserved response among vertebrates, which adds a new perspective for evolutionary medicine research.


Subject(s)
Hypothermia , Animals , Body Temperature , Body Temperature Regulation , Chickens , Endotoxins/toxicity
4.
J Exp Biol ; 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33758021

ABSTRACT

The brainstem region medullary raphe modulates non-shivering and shivering thermogenesis and cutaneous vasomotion in rodents. Whether the same scenario occurs in the other endothermic group, i.e. birds, is still unknown. Therefore, we hypothesised that the medullary raphe modulates heat gain and loss thermoeffectors in birds. We investigated the effect of glutamatergic and GABAergic inhibitions in this specific region on body temperature (Tb), oxygen consumption (thermogenesis), ventilation (O2 supply in cold, thermal tachypnea in heat) and heat loss index (cutaneous vasomotion) in one-week-old chicken exposed to neutral (31°C), cold (26°C) and heat (36°C) conditions. Intra-medullary raphe antagonism of NMDA glutamate (AP5; 0.5, 5 mM) and GABAA (bicuculline; 0.05, 0.5 mM) receptors reduced Tb of chicks at 31°C and 26oC, due mainly to an O2 consumption decrease. AP5 transiently increased breathing frequency during cold exposure. At 31°C, heat loss index was higher in the bicuculline and AP5 groups (higher doses) than vehicle at the beginning of the Tb reduction. No treatment affected any variable tested at 36oC. The results suggest that glutamatergic and GABAergic excitatory influences on the medullary raphe of chicks modulate thermogenesis and glutamatergic stimulation prevents tachypnea, without having any role in warmth-defence responses. A double excitation influence on the medullary raphe may provide a protective neural mechanism for supporting thermogenesis during early life, when energy expenditure to support growth and homeothermy is high. This novel demonstration of a thermoregulatory role for the raphe in birds suggests a convergent brainstem neurochemical regulation of body temperature in endotherms.

5.
Environ Toxicol Chem ; 39(11): 2208-2220, 2020 11.
Article in English | MEDLINE | ID: mdl-32725906

ABSTRACT

Dioxin exposure during bird embryonic development disrupts immunity as well as mechanisms involved in energy metabolism, potentially affecting negatively acute-phase responses to pathogens. Thus, we hypothesized that embryonic exposure to 2,3,7,8-tetrachlorodibenzodioxin (TCDD) changes the metabolism and blood physiology of domestic chicks, affecting their physiological competence for responding to immune challenges. To test this hypothesis, we injected doses of 0, 1.5, and 3 ng TCDD/egg (based on survival experiments) on embryonic day 4 and then measured O2 consumption and CO2 production for metabolic rate, ventilation, and body temperature (TB ) in 5-d-old chicks. Then, chicks were injected with lipopolysaccharide (LPS, endotoxin) or saline prior to repeating the physiological measurements. A second chick group exposed to identical TCDD and LPS treatments had blood partial pressure of oxygen, partial pressure of carbon dioxide, pH, bicarbonate concentration, lactate concentration, osmolality, hemoglobin concentration, red blood cell concentration, and hematocrit, as well as TB , analyzed at 1 and 5 h after LPS injection. Metabolism in chicks embryonically exposed to 1.5 and 3 ng TCDD/egg was up to 37% higher, whereas body mass of chicks exposed to 3 ng TCDD/egg was approximately 6% lower. Chicks embryonically exposed to 3 ng TCDD/egg challenged with LPS showed a relative persistent hypometabolism accompanied by elimination of the normal hematological and osmotic responses to LPS. We conclude that embryonic exposure to TCDD affects posthatching metabolism as well as impairs metabolic, hematological, and osmotic responses to LPS. Environ Toxicol Chem 2020;39:2208-2220. © 2020 SETAC.


Subject(s)
Chickens/blood , Chickens/metabolism , Endotoxins/toxicity , Environmental Exposure/analysis , Polychlorinated Dibenzodioxins/toxicity , Animals , Basal Metabolism/drug effects , Body Temperature/drug effects , Body Weight/drug effects , Chick Embryo , Lipopolysaccharides/toxicity , Pulmonary Ventilation/drug effects
6.
Pflugers Arch ; 471(9): 1191-1203, 2019 09.
Article in English | MEDLINE | ID: mdl-31428866

ABSTRACT

Recently, we have described, in non-genetically modified rats, that peripheral transient receptor potential vanilloid-4 (TRPV4) channels are activated and trigger warmth-defence responses at ambient temperatures of 26-30 °C. Evidence points to the presence of TRPV4 in the medial preoptic area, a region described to be involved in the activation of thermoeffector pathways, including those involved in heat loss. Thus, we tested the hypothesis that TRPV4 in the medial preoptic area modulates thermoregulation under warm conditions. To this end, under two ambient temperatures (21 and 28 °C), body temperature was measured in rats following blockade of preoptic TRPV4 with two antagonists, HC-067047 and GSK 2193874. Oxygen consumption, heat loss index and preferred ambient temperature were also determined in order to assess thermoeffector activity. Antagonism of central TRPV4 caused an increase in body temperature in rats exposed to 28 °C, but not in those exposed to 21 °C. The body temperature increase at 28 °C was accompanied by an increase in oxygen consumption and an earlier reduction of the heat loss index. In behavioural experiments, control animals previously exposed to warm ambient temperatures (28-30 °C) for 2 h selected colder temperatures in a thermogradient compared to those injected with HC-067047. Our results support the idea that preoptic TRPV4 modulates thermoregulation in a warm environment by activating both autonomic and behavioural heat loss responses. Thus, according to the present study and to that published recently by our group, the activation of warmth-defence responses by TRPV4 seems to be dependent on the activity of both peripheral and central channels.


Subject(s)
Hypothalamus/metabolism , Preoptic Area/metabolism , TRPV Cation Channels/metabolism , Animals , Autonomic Nervous System/metabolism , Body Temperature/physiology , Body Temperature Regulation/physiology , Cold Temperature , Hot Temperature , Male , Oxygen Consumption/physiology , Rats , Rats, Wistar
7.
J Exp Biol ; 222(Pt 10)2019 05 16.
Article in English | MEDLINE | ID: mdl-31028104

ABSTRACT

The embryonic development of parabronchi occurs mainly during the second half of incubation in precocious birds, which makes this phase sensitive to possible morphological modifications induced by O2 supply limitation. Thus, we hypothesized that hypoxia during the embryonic phase of parabronchial development induces morphological changes that remain after hatching. To test this hypothesis, chicken embryos were incubated entirely (21 days) under normoxia or partially under hypoxia (15% O2 during days 12 to 18). Lung structures, including air capillaries, blood capillaries, infundibula, atria, parabronchial lumen, bronchi, blood vessels larger than capillaries and interparabronchial tissue, in 1- and 10-day-old chicks were analyzed using light microscopy-assisted stereology. Tissue barrier and surface area of air capillaries were measured using electron microscopy-assisted stereology, allowing for calculation of the anatomical diffusion factor. Hypoxia increased the relative volumes of air and blood capillaries, structures directly involved in gas exchange, but decreased the relative volumes of atria in both groups of chicks, and the parabronchial lumen in older chicks. Accordingly, the surface area of the air capillaries and the anatomical diffusion factor were increased under hypoxic incubation. Treatment did not alter total lung volume, relative volumes of infundibula, bronchi, blood vessels larger than capillaries, interparabronchial tissue or the tissue barrier of any group. We conclude that hypoxia during the embryonic phase of parabronchial development leads to a morphological remodeling, characterized by increased volume density and respiratory surface area of structures involved in gas exchange at the expense of structures responsible for air conduction in chicks up to 10 days old.


Subject(s)
Airway Remodeling/drug effects , Bronchi/growth & development , Chickens/growth & development , Oxygen/metabolism , Anaerobiosis , Animals , Bronchi/drug effects , Chick Embryo/drug effects
8.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30682830

ABSTRACT

Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation ( V ˙ E ), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 µg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia.

9.
Respir Physiol Neurobiol ; 233: 73-80, 2016 11.
Article in English | MEDLINE | ID: mdl-27543446

ABSTRACT

The locus coeruleus (LC) is a pontine noradrenergic nucleus that acts as a central chemoreceptor to CO2/pH and has been implicated in the cognitive aspects of stress responses. This participation is in part mediated by the action of corticotropin-releasing factor (CRF), which when released in these situations increases the firing frequency of LC noradrenergic neurons. Nevertheless, the role of CRF1 receptors in the LC in breathing and temperature control is unknown. Therefore, we tested the involvement of CRF1 receptors located in the LC in room air ventilation and the ventilatory response induced by hypercapnia (7% CO2) in rats. To this end, we injected CRF-R1-selective antagonists (antalarmin-1.2 and 2.4mmol/0.1µL or CP-376395-5nmol/0.1µL) into the LC of male Wistar rats. Pulmonary ventilation (VE) and body temperature (Tb, dataloggers) were measured in air, followed by 7% CO2 in unanesthetized rats. Antalarmin (higher dose) and CP-376395 in the LC caused an increase in VE during normocapnia and hypercapnia, due to an increase in tidal volume. There were no differences in Tb between groups under normocapnia and hypercapnia. The results suggest that CRF acting on CRF1 receptors in the LC exerts a tonic inhibitory role in ventilation.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Locus Coeruleus/physiology , Pulmonary Ventilation/physiology , Respiration , Aminopyridines/pharmacology , Animals , Corticotropin-Releasing Hormone/pharmacology , Dose-Response Relationship, Drug , Hypercapnia/physiopathology , Locus Coeruleus/drug effects , Male , Microinjections , Pulmonary Ventilation/drug effects , Pyrimidines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Respiration/drug effects , Tidal Volume/drug effects , Tidal Volume/physiology
10.
Respir Physiol Neurobiol ; 190: 86-95, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24035835

ABSTRACT

The locus coeruleus (LC) plays an important role in central chemoreception. In young rats (P9 or younger), 85% of LC neurons increase firing rate in response to hypercapnia vs. only about 45% of neurons from rats P10 or older. Carbenoxolone (CARB - gap junction blocker) does not affect the % of LC neurons responding in young rats but it decreases the % responding by half in older animals. We evaluated the participation of gap junctions in the CO2 ventilatory response in unanesthetized adult rats by bilaterally microinjecting CARB (300µM, 1mM or 3mM/100nL), glycyrrhizic acid (GZA, CARB analog, 3mM) or vehicle (aCSF - artificial cerebrospinal fluid) into the LC of Wistar rats. Bilateral gap junction blockade in LC neurons did not affect resting ventilation; however, the increase in ventilation produced by hypercapnia (7% CO2) was reduced by ∼25% after CARB 1mM or 3mM injection (1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1468.3±122.2mLkg(-1)min(-1) for 1mM CARB, P<0.05; 1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1540.9±68.4mLkg(-1)min(-1) for the 3mM CARB group, P<0.05) due largely to a decrease in respiratory frequency. GZA injection or CARB injection outside the LC (peri-LC) had no effect on ventilation under any conditions. The results suggest that gap junctions in the LC modulate the hypercapnic ventilatory response of adult rats.


Subject(s)
Gap Junctions/physiology , Locus Coeruleus/cytology , Respiration , Wakefulness/physiology , Analysis of Variance , Animals , Anti-Inflammatory Agents , Blood Gas Analysis , Carbenoxolone/pharmacology , Dose-Response Relationship, Drug , Gap Junctions/drug effects , Glycyrrhizic Acid/pharmacology , Hydrogen-Ion Concentration/drug effects , Hypercapnia/physiopathology , Locus Coeruleus/drug effects , Male , Microinjections , Rats , Rats, Wistar , Respiration/drug effects
11.
Exp Physiol ; 99(1): 232-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24058188

ABSTRACT

Locus coeruleus (LC) noradrenergic neurons are chemosensitive to CO2 and pH in mammals and amphibians and are involved in the CO2-related drive to breathe. Purinergic neuromodulation in the LC is of particular interest because ATP acts as a neuromodulator in brainstem regions involved in cardiovascular and respiratory regulation, such as the LC. ATP acting on LC P2 receptors influences the release of noradrenaline. Thus, the goal of the present study was to investigate the role of LC purinergic neuromodulation of ventilatory and cardiovascular responses in normocapnic and hypercapnic conditions in unanaesthetized male Wistar rats. We assessed the purinergic modulation of cardiorespiratory systems by microinjecting an ATP P2X receptor agonist [α,ß-methylene ATP (α,ß-meATP), 0.5 or 1 nmol in 40 nl] and two non-selective P2 receptor antagonists [pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), 0.5 or 1 nmol in 40 nl; and suramin, 1 nmol in 40 nl] into the LC. Pulmonary ventilation (measured by plethysmography), mean arterial pressure (MAP) and heart rate (HR) were determined before and after unilateral microinjection (40 nl) of α,ß-meATP, PPADS, suramin or 0.9% saline (vehicle) into the LC. These measurements were made during a 60 min exposure to normocapnic conditions or a 30 min exposure to 7% CO2. Subsequently, animals undergoing pharmacological treatment were subjected to a 30 min exposure to normocapnic conditions as a recovery period. In normocapnic conditions, α,ß-meATP did not affect any parameter, whereas PPADS decreased respiratory frequency and increased MAP and HR. Suramin increased MAP and HR but did not change ventilation. Moreover, hypercapnic conditions induced an increase in ventilation and a decrease in HR in all groups. In hypercapnic conditions, α,ß-meATP increased ventilation but did not change cardiovascular parameters, whereas PPADS increased MAP but did not alter ventilation, and suramin increased both ventilation and MAP. Thus, our data suggest that purinergic signalling, specifically through P2 receptors, in the LC plays an important role in cardiorespiratory control in normocapnic and hypercapnic conditions in unanaesthetized rats.


Subject(s)
Adenosine Triphosphate/metabolism , Cardiovascular System/physiopathology , Locus Coeruleus/metabolism , Pulmonary Ventilation/physiology , Adenosine Triphosphate/analogs & derivatives , Animals , Arterial Pressure/drug effects , Blood Gas Analysis , Carbon Dioxide/blood , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Heart Rate/drug effects , Heart Rate/physiology , Hydrogen-Ion Concentration , Locus Coeruleus/drug effects , Male , Microinjections , Norepinephrine/metabolism , Pulmonary Ventilation/drug effects , Purinergic P2 Receptor Antagonists/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...