Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 807(Pt 2): 150891, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34637877

ABSTRACT

Although metacommunity dynamics of lentic phytoplankton are relatively well-documented, studies on the role of environmental and spatial processes in shaping phytoplankton communities of large rivers are still scarce. Here, we examined six phytoplankton data sets, which were collected in 1978-2017 from large river-scale segments (mean spatial extent 1117 km) in the Danube River. Our aim was to elucidate role of climatic, spatial and temporal predictors in variation of phytoplankton beta diversity using variance partitioning for compositions of species and functional groups sensu Reynolds. We hypothesised that phytoplankton beta diversity (measured as average distance to group centroid) would be positively related to both climatic heterogeneity and spatial extent used as a proxy for dispersal limitation. Additionally, we tested alternative dispersal models to evaluate different spatial processes structuring phytoplankton community. Our results revealed that spatial variables were more important than climatic factors in controlling both species and functional group composition. Climatic heterogeneity showed significant positive relationship with beta diversity. In contrast, there was no significant relationship between beta diversity and spatial extent, suggesting that spatial effect on beta-diversity was attenuated by anthropogenic disturbance. The better performance of non-directional model compared to model of water directionality suggested that spatial dynamics of phytoplankton metacommunity was in large part regulated by differences in the regional species pools. Spatial and temporal variables outperformed environmental (including climatic) factors in explaining phytoplankton metacommunity structure, indicating that phytoplankton exhibited strong biogeographical patterns. Thus, dispersal limitation interfered with species-sorting processes in determining phytoplankton community structure. In conclusion, our findings revealed that the development of a more reliable bioassessment program of the Danube River should be based on separation into basin regions.


Subject(s)
Phytoplankton , Rivers , Anthropogenic Effects
2.
Bioresour Technol ; 204: 192-201, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26790867

ABSTRACT

The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage.


Subject(s)
Biofuels , Hydrogen/metabolism , Chlorophyta/metabolism , Conservation of Energy Resources/economics , Conservation of Energy Resources/trends , Fermentation , Hydrogen/chemistry , Models, Theoretical , Waste Management/methods , Wastewater/chemistry
3.
Bioresour Technol ; 177: 375-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481804

ABSTRACT

Stability of biogas production is highly dependent on the microbial community composition of the bioreactors. This composition is basically determined by the nature of biomass substrate and the physical-chemical parameters of the anaerobic digestion. Operational temperature is a major factor in the determination of the anaerobic degradation process. Next-generation sequencing (NGS)-based metagenomic approach was used to monitor the organization and operation of the microbial community throughout an experiment where mesophilic reactors (37°C) were gradually switched to thermophilic (55°C) operation. Temperature adaptation resulted in a clearly thermophilic community having a generally decreased complexity compared to the mesophilic system. A temporary destabilization of the system was observed, indicating a lag phase in the community development in response to temperature stress. Increased role of hydrogenotrophic methanogens under thermophilic conditions was shown, as well as considerably elevated levels of Fe-hydrogenases and hydrogen producer bacteria were observed in the thermophilic system.


Subject(s)
Bacteria/metabolism , Biofuels/microbiology , Hydrogen/metabolism , Methane/biosynthesis , Temperature , Adaptation, Physiological , Bioreactors/microbiology , Fatty Acids, Volatile/analysis , Hydrogenase/metabolism , Phylogeny , Stress, Physiological
4.
Biotechnol Biofuels ; 7(1): 139, 2014.
Article in English | MEDLINE | ID: mdl-25278996

ABSTRACT

BACKGROUND: Biohydrogen production through dark fermentation using organic waste as a substrate has gained increasing attention in recent years, mostly because of the economic advantages of coupling renewable, clean energy production with biological waste treatment. An ideal approach is the use of selected microbial inocula that are able to degrade complex organic substrates with simultaneous biohydrogen generation. Unfortunately, even with a specifically designed starting inoculum, there is still a number of parameters, mostly with regard to the fermentation conditions, that need to be improved in order to achieve a viable, large-scale, and technologically feasible solution. In this study, statistics-based factorial experimental design methods were applied to investigate the impact of various biological, physical, and chemical parameters, as well as the interactions between them on the biohydrogen production rates. RESULTS: By developing and applying a central composite experimental design strategy, the effects of the independent variables on biohydrogen production were determined. The initial pH value was shown to have the largest effect on the biohydrogen production process. High-throughput sequencing-based metagenomic assessments of microbial communities revealed a clear shift towards a Clostridium sp.-dominated environment, as the responses of the variables investigated were maximized towards the highest H2-producing potential. Mass spectrometry analysis suggested that the microbial consortium largely followed hydrogen-generating metabolic pathways, with the simultaneous degradation of complex organic compounds, and thus also performed a biological treatment of the beer brewing industry wastewater used as a fermentation substrate. CONCLUSIONS: Therefore, we have developed a complex optimization strategy for batch-mode biohydrogen production using a defined microbial consortium as the starting inoculum and beer brewery wastewater as the fermentation substrate. These results have the potential to bring us closer to an optimized, industrial-scale system which will serve the dual purpose of wastewater pre-treatment and concomitant biohydrogen production.

SELECTION OF CITATIONS
SEARCH DETAIL
...