Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875125

ABSTRACT

ABSTRACT: The urocortin 1 (UCN1)-expressing centrally projecting Edinger-Westphal (EWcp) nucleus is influenced by circadian rhythms, hormones, stress, and pain, all known migraine triggers. Our study investigated EWcp's potential involvement in migraine. Using RNAscope in situ hybridization and immunostaining, we examined the expression of calcitonin gene-related peptide (CGRP) receptor components in both mouse and human EWcp and dorsal raphe nucleus (DRN). Tracing study examined connection between EWcp and the spinal trigeminal nucleus (STN). The intraperitoneal CGRP injection model of migraine was applied and validated by light-dark box, and von Frey assays in mice, in situ hybridization combined with immunostaining, were used to assess the functional-morphological changes. The functional connectivity matrix of EW was examined using functional magnetic resonance imaging in control humans and interictal migraineurs. We proved the expression of CGRP receptor components in both murine and human DRN and EWcp. We identified a direct urocortinergic projection from EWcp to the STN. Photophobic behavior, periorbital hyperalgesia, increased c-fos gene-encoded protein immunoreactivity in the lateral periaqueductal gray matter and trigeminal ganglia, and phosphorylated c-AMP-responsive element binding protein in the STN supported the efficacy of CGRP-induced migraine-like state. Calcitonin gene-related peptide administration also increased c-fos gene-encoded protein expression, Ucn1 mRNA, and peptide content in EWcp/UCN1 neurons while reducing serotonin and tryptophan hydroxylase-2 levels in the DRN. Targeted ablation of EWcp/UCN1 neurons induced hyperalgesia. A positive functional connectivity between EW and STN as well as DRN has been identified by functional magnetic resonance imaging. The presented data strongly suggest the regulatory role of EWcp/UCN1 neurons in migraine through the STN and DRN with high translational value.

2.
Front Cell Dev Biol ; 10: 1059073, 2022.
Article in English | MEDLINE | ID: mdl-36561364

ABSTRACT

The centrally projecting Edinger-Westphal nucleus (EWcp) is involved in stress adaptation. Transient receptor potential ankyrin 1 (TRPA1) mRNA was previously shown to be expressed abundantly in mouse and human EWcp urocortin 1 (UCN1) positive neurons and reacted to chronic stress. Since UCN1 neurons are deeply implicated in stress-related disorders, we hypothesized that TRPA1/UCN1 neurons are also affected in posttraumatic stress disorder (PTSD). We examined male Trpa1 wild type (WT) and gene-deficient (KO) mice in the single prolonged stress (SPS) model of PTSD. Two weeks later the behavioral changes were monitored by forced swim test (FST) and restraint. The Trpa1 and Ucn1 mRNA expression and the UCN1 peptide content were assessed by RNAscope in situ hybridization technique combined with immunofluorescence labeling in the EWcp. SPS-induced immobility was lower in Trpa1 KO compared to WT animals, both in the FST and restraint, corresponding to diminished depression-like behavior. The copy number of Trpa1 mRNA decreased significantly in EWcp of WT animals in response to SPS. Higher basal Ucn1 mRNA expression was observed in the EWcp of KO animals, that was not affected by SPS exposure. EWcp neurons of WT animals responded to SPS with substantially increased amount of UCN1 peptide content compared to control animals, whereas such changes were not observable in KO mice. The decreased Trpa1 mRNA expression in the SPS model of PTSD associated with increased neuronal UCN1 peptide content suggests that this cation channel might be involved in the regulation of stress adaptation and may contribute to the pathomechanism of PTSD.

3.
Front Cell Dev Biol ; 10: 1046559, 2022.
Article in English | MEDLINE | ID: mdl-36704197

ABSTRACT

Introduction: The centrally projecting Edinger-Westphal nucleus (EWcp) contributes to the control of alcohol consumption by its urocortin 1 (UCN1) and cocaine- and amphetamine-regulated transcript (CART) co-expressing peptidergic neurons. Our group recently showed that the urocortinergic centrally projecting EWcp is the primary seat of central nervous system transient receptor potential ankyrin 1 (TRPA1) cation channel mRNA expression. Here, we hypothesized that alcohol and its metabolites, that pass through the blood-brain barrier, may influence the function of urocortinergic cells in centrally projecting EWcp by activating TRPA1 ion channels. We aimed to examine the functional activity of TRPA1 in centrally projecting EWcp and its possible role in a mouse model of acute alcohol exposure. Methods: Electrophysiological measurements were performed on acute brain slices of C57BL/6J male mice containing the centrally projecting EWcp to prove the functional activity of TRPA1 using a selective, potent, covalent agonist JT010. Male TRPA1 knockout (KO) and wildtype (WT) mice were compared with each other in the morphological studies upon acute alcohol treatment. In both genotypes, half of the animals was treated intraperitoneally with 1 g/kg 6% ethanol vs. physiological saline-injected controls. Transcardial perfusion was performed 2 h after the treatment. In the centrally projecting EWcp area, FOS immunohistochemistry was performed to assess neuronal activation. TRPA1, CART, and urocortin 1 mRNA expression as well as urocortin 1 and CART peptide content was semi-quantified by RNAscope in situ hybridization combined with immunofluorescence. Results: JT010 activated TRPA1 channels of the urocortinergic cells in acute brain slices. Alcohol treatment resulted in a significant FOS activation in both genotypes. Alcohol decreased the Trpa1 mRNA expression in WT mice. The assessment of urocortin 1 peptide immunoreactivity revealed lower basal urocortin 1 in KO mice compared to WTs. The urocortin 1 peptide content was affected genotype-dependently by alcohol: the peptide content decreased in WTs while it increased in KO mice. Alcohol exposure influenced neither CART and urocortin 1 mRNA expression nor the centrally projecting EWcp/CART peptide content. Conclusion: We proved the presence of functional TRPA1 receptors on urocortin 1 neurons of the centrally projecting EWcp. Decreased Trpa1 mRNA expression upon acute alcohol treatment, associated with reduced neuronal urocortin 1 peptide content suggesting that this cation channel may contribute to the regulation of the urocortin 1 release.

4.
Front Physiol ; 11: 559109, 2020.
Article in English | MEDLINE | ID: mdl-33071817

ABSTRACT

Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and play an integrative role in pain processing and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin, and gangliosides. We earlier proved that lipid raft disintegration by cholesterol depletion using a novel carboxamido-steroid compound (C1) and methyl ß-cyclodextrin (MCD) significantly and concentration-dependently inhibit TRPV1 and TRPA1 activation in primary sensory neurons and receptor-expressing cell lines. Here we investigated the effects of C1 compared to MCD in mouse pain models of different mechanisms. Both C1 and MCD significantly decreased the number of the TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements in the first hour by 45% and 32%, respectively, and C1 also in the second hour by 26%. Furthermore, C1 significantly decreased the TRPV1 stimulation (resiniferatoxin)-evoked mechanical hyperalgesia involving central sensitization processes, while its inhibitory effect on thermal allodynia was not statistically significant. In contrast, MCD did not affect these resiniferatoxin-evoked nocifensive responses. Both C1 and MCD had inhibitory action on TRPA1 activation (formalin)-induced acute nocifensive reactions (paw liftings, lickings, holdings, and shakings) in the second, neurogenic inflammatory phase by 36% and 51%, respectively. These are the first in vivo data showing that our novel lipid raft disruptor carboxamido-steroid compound exerts antinociceptive and antihyperalgesic effects by inhibiting TRPV1 and TRPA1 ion channel activation similarly to MCD, but in 150-fold lower concentrations. It is concluded that C1 is a useful experimental tool to investigate the effects of cholesterol depletion in animal models, and it also might open novel analgesic drug developmental perspectives.

5.
Int J Mol Sci ; 21(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708653

ABSTRACT

Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons and regulate nociceptor and inflammatory functions. Resolvins are endogenous lipid mediators. Resolvin D1 (RvD1) is described as a selective inhibitor of TRPA1-related postoperative and inflammatory pain in mice acting on the G protein-coupled receptor DRV1/GPR32. Resolvin D2 (RvD2) is a very potent TRPV1 and TRPA1 inhibitor in DRG neurons, and decreases inflammatory pain in mice acting on the GPR18 receptor, via TRPV1/TRPA1-independent mechanisms. We provided evidence that resolvins inhibited neuropeptide release from the stimulated sensory nerve terminals by TRPV1 and TRPA1 activators capsaicin (CAPS) and allyl-isothiocyanate (AITC), respectively. We showed that RvD1 and RvD2 in nanomolar concentrations significantly decreased TRPV1 and TRPA1 activation on sensory neurons by fluorescent calcium imaging and inhibited the CAPS- and AITC-evoked 45Ca-uptake on TRPV1- and TRPA1-expressing CHO cells. Since CHO cells are unlikely to express resolvin receptors, resolvins are suggested to inhibit channel opening through surrounding lipid raft disruption. Here, we proved the ability of resolvins to alter the membrane polarity related to cholesterol composition by fluorescence spectroscopy. It is concluded that targeting lipid raft integrity can open novel peripheral analgesic opportunities by decreasing the activation of nociceptors.


Subject(s)
Docosahexaenoic Acids/metabolism , Membrane Microdomains/metabolism , Sensory Receptor Cells/metabolism , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Rats, Wistar , Sensory Receptor Cells/cytology
6.
J Lipid Res ; 59(10): 1851-1863, 2018 10.
Article in English | MEDLINE | ID: mdl-30093524

ABSTRACT

Transient Receptor Potential (TRP) cation channels, like the TRP Vanilloid 1 (TRPV1) and TRP Ankyrin 1 (TRPA1), are expressed on primary sensory neurons. These thermosensor channels play a role in pain processing. We have provided evidence previously that lipid raft disruption influenced the TRP channel activation, and a carboxamido-steroid compound (C1) inhibited TRPV1 activation. Therefore, our aim was to investigate whether this compound exerts its effect through lipid raft disruption and the steroid backbone (C3) or whether altered position of the carboxamido group (C2) influences the inhibitory action by measuring Ca2+ transients on isolated neurons and calcium-uptake on receptor-expressing CHO cells. Membrane cholesterol content was measured by filipin staining and membrane polarization by fluorescence spectroscopy. Both the percentage of responsive cells and the magnitude of the intracellular Ca2+ enhancement evoked by the TRPV1 agonist capsaicin were significantly inhibited after C1 and C2 incubation, but not after C3 administration. C1 was able to reduce other TRP channel activation as well. The compounds induced cholesterol depletion in CHO cells, but only C1 induced changes in membrane polarization. The inhibitory action of the compounds on TRP channel activation develops by lipid raft disruption, and the presence and the position of the carboxamido group is essential.


Subject(s)
Amides/chemistry , Ion Channel Gating/drug effects , Membrane Microdomains/drug effects , Steroids/chemistry , Steroids/pharmacology , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/metabolism , Animals , Biological Transport/drug effects , CHO Cells , Calcium/metabolism , Cell Survival/drug effects , Cricetulus , Membrane Microdomains/metabolism , Mice , Neurons/cytology , Neurons/drug effects , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...