Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Adv Med Sci ; 68(2): 227-237, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37379765

ABSTRACT

PURPOSE: This study aimed to evaluate the role of Translationally Controlled Tumor Protein (TCTP) in breast cancer (BC) and investigate the effects of sertraline, a serotonin selective reuptake inhibitor (SSRI), on BC cells. The objective was to assess the potential of sertraline as a therapeutic agent in BC treatment by examining its ability to inhibit TCTP expression and exert antitumor effects. MATERIAL AND METHODS: We utilized five different BC cell lines representing the molecular heterogeneity and distinct subtypes of BC, including luminal, normal-like, HER2-positive, and triple-negative BC. These subtypes play a crucial role in determining clinical treatment strategies and prognosis. RESULTS: The highest levels of TCTP were observed in triple-negative BC cell lines, known for their aggressive behavior. Sertraline treatment reduced TCTP expression in BC cell lines, significantly impacting cell viability, clonogenicity, and migration. Additionally, sertraline sensitized triple-negative BC cell lines to cytotoxic chemotherapeutic drugs (doxorubicin and cisplatin) suggesting its potential as an adjunctive therapy to enhance the chemotherapeutic response. Bioinformatic analysis of TCTP mRNA levels in TCGA BC data revealed a negative correlation between TCTP levels and patient survival, as well as between TCTP/tpt1 and Ki67. These findings contradict our data and previous studies indicating a correlation between TCTP protein levels and aggressiveness and poor prognosis in BC. CONCLUSIONS: Sertraline shows a promise as a potential therapeutic option for BC, particularly in triple-negative BC. Its ability to inhibit TCTP expression, enhance chemotherapeutic response, highlights its potential clinical utility in BC treatment, specifically in triple-negative BC subtype.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Sertraline/pharmacology , Sertraline/therapeutic use , Biomarkers, Tumor/genetics , Antineoplastic Agents/therapeutic use , MCF-7 Cells
3.
Transl Oncol ; 16: 101303, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34911014

ABSTRACT

Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.

4.
Article in English | MEDLINE | ID: mdl-34377142

ABSTRACT

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.

5.
Biomedicines ; 9(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801128

ABSTRACT

Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.

6.
J. venom. anim. toxins incl. trop. dis ; 27: e20200188, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1279408

ABSTRACT

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Subject(s)
Animals , Spider Venoms/toxicity , Spiders , Serpins , Serine Proteases , Bites and Stings
7.
Int J Biol Macromol ; 164: 3984-3999, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32871121

ABSTRACT

Bites evoked by Brown spiders (Loxosceles genus) are associated with skin injuries (cutaneous rash, itching, swelling, erythema and dermonecrosis) and systemic manifestations. Transcriptome analyses of Loxosceles venom glands showed that the venom has a complex composition containing toxins such as phospholipases-D, metalloproteases and hyaluronidases. Here, by screening the RNA from L. intermedia venom glands, we cloned a novel allergen toxin, and named LALLT (LoxoscelesAllergen-Like Toxin). Sequence analysis showed that LALLT is closely related to allergens from other spiders and RNA screening indicated the presence of LALLT orthologues in the venom of other Loxosceles spiders. Recombinant LALLT was expressed (~45 kDa) in baculovirus-infected insect cells and purified by affinity chromatography. Antibodies against different Loxosceles venoms cross-reacted with LALLT and antibodies against LALLT recognized three Loxosceles venoms, revealing epitopes identity. LALLT triggered paw edema in mice and erythema, edema and leukocyte infiltration into the dermis of rabbit skin. Also, LALLT induced vascular permeability in mice, degranulation of rat mesentery mast cells, as well as prompted degranulation and increased calcium influx in RBL-2H3 cells. Data reported suggest for the first time the existence of allergens in Loxosceles venoms and make LALLT available for clinical studies about allergenic events arisen by Loxosceles envenoming.


Subject(s)
Allergens/chemistry , Allergens/immunology , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/immunology , Recombinant Proteins , Spider Venoms/chemistry , Spider Venoms/immunology , Allergens/genetics , Amino Acid Sequence , Animals , Baculoviridae/genetics , Cell Degranulation/immunology , Cloning, Molecular , Gene Expression , Genetic Vectors/genetics , Mast Cells/immunology , Mast Cells/metabolism , Mice , Phosphoric Diester Hydrolases/genetics , Rabbits , Sf9 Cells , Spider Venoms/genetics
8.
J Oral Rehabil ; 47(9): 1084-1094, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32524653

ABSTRACT

BACKGROUND: Temporomandibular joint osteoarthritis (TMJOA) is a progressive degenerative disease caused by imbalance between anabolic and catabolic stimuli. OBJECTIVE: The aim of this study was to evaluate histopathological changes, collagen degeneration and the expression of eleven TMJOA biomarkers in articular discs. METHODS: Specimens were obtained from eight female patients submitted to discectomy. Discs were divided into anterior band (AB), intermediate zone (IZ) and posterior band (PB) for computerised histomorphometric analyses. Each was assigned a histopathological degeneration score (HDS). Collagen degeneration was assessed with Picrosirius-polarisation method. Biomarkers were evaluated through immunohistochemistry, including IGF-1, OPG, VEGF, TNF-α, FGF-23, IHH, MMP-3, MMP-9, TGF-ß1 , BMP-2 and WNT-3. Image processing software was used to calculate average immature collagen ratios and immunostained areas. Spearman rank tests were applied to verify correlations, with significance level of 0.05. RESULTS: The HDS showed negative correlation with expression of VEGF in IZ and PB (P < .05) and positive with TNF-α in AB (P < .01). Collagen degeneration correlated with TGF-ß1 (P < .05), BMP-2 (P < .01) and IHH (P < .05) immunostained areas in the IZ; TGF-ß1, BMP-2 and IHH expression correlated among each other in AB and IZ (P < .05). CONCLUSION: Angiogenesis and tissue fragmentation may result from aberrant physiologic responses mediated by VEGF and TNF-α, compromising TMJ discs during OA progression. The expression of TGF-ß1, BMP-2 and IHH could be related to collagen degeneration in displaced discs and may participate in TMJOA pathogenesis.


Subject(s)
Osteoarthritis , Temporomandibular Joint Disorders , Female , Fibroblast Growth Factor-23 , Humans , Immunohistochemistry , Temporomandibular Joint
9.
Cells ; 8(12)2019 11 22.
Article in English | MEDLINE | ID: mdl-31766608

ABSTRACT

LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.


Subject(s)
Biomarkers, Tumor/immunology , Hypersensitivity/immunology , Inflammation/immunology , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/immunology , Skin Diseases/immunology , Spider Venoms/chemistry , Spider Venoms/immunology , Animals , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Cimetidine/administration & dosage , Cimetidine/pharmacology , Cromolyn Sodium/administration & dosage , Cromolyn Sodium/pharmacology , Dose-Response Relationship, Drug , Hypersensitivity/drug therapy , Inflammation/drug therapy , Injections, Intraperitoneal , Injections, Intravenous , Mast Cells/drug effects , Mast Cells/immunology , Mice , Piperidines/administration & dosage , Piperidines/pharmacology , Promethazine/administration & dosage , Promethazine/pharmacology , Rabbits , Rats , Skin Diseases/drug therapy , Tumor Cells, Cultured , Tumor Protein, Translationally-Controlled 1
10.
Cells, v. 8, n. 12, p. 1489, nov. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2916

ABSTRACT

LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.

11.
Cells ; 8(12): 1489, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17391

ABSTRACT

LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.

12.
Toxicol In Vitro ; 50: 40-46, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29427708

ABSTRACT

Murine melanoma cells B16F1 were exposed to the flame retardant and wood preservative chemical 2,4,6-tribromophenol (TBP) during 24 and 48 h, at the concentrations found in human diet. TBP-exposed cells had increased MTT and Alamar blue® metabolism and ABCB5 mRNA levels (qPCR), but the cells had decreased proliferation (crystal violet assay), migration (scratch assay), and drug-effux transporters activity (rhodamine B efflux assay). Exposure to TBP did not affect the cell viability (neutral red and annexin V-PI assays), colony formation (colony number, clonogenic assay), and the levels of reactive oxygen species (DCF probe) or P53 mRNA (qPCR). The tested TBP concentrations had low toxicity to melanoma cells B16F1. However, dual effect on metastatic profile and chemoresistance suggests that the increase of ABCB5 positively modulates the cell chemoresistance, but decreases cell migration and proliferation. These findings may be explored in cancer therapy.


Subject(s)
Flame Retardants/toxicity , Melanoma, Experimental , Phenols/toxicity , ATP Binding Cassette Transporter, Subfamily B , ATP-Binding Cassette Transporters/genetics , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism
13.
Toxicon ; 67: 17-30, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23462381

ABSTRACT

The mechanism through which brown spiders (Loxosceles genus) cause dermonecrosis, dysregulated inflammatory responses, hemolysis and platelet aggregation, which are effects reported following spider bites, is currently attributed to the presence of phospholipase-D in the venom. In the present investigation, through two-dimensional immunoblotting, we observed immunological cross-reactivity for at least 25 spots in crude Loxosceles intermedia venom, indicating high expression levels for different isoforms of phospholipase-D. Using a recombinant phospholipase-D from the venom gland of L. intermedia (LiRecDT1) in phospholipid-degrading kinetic experiments, we determined that this phospholipase-D mainly hydrolyzes synthetic sphingomyelin in a time-dependent manner, generating ceramide 1-phosphate plus choline, as well as lysophosphatidylcholine, generating lysophosphatidic acid plus choline, but exhibits little activity against phosphatidylcholine. Through immunofluorescence assays with antibodies against LiRecDT1 and using a recombinant GFP-LiRecDT1 fusion protein, we observed direct binding of LiRecDT1 to the membrane of B16-F10 cells. We determined that LiRecDT1 hydrolyzes phospholipids in detergent extracts and from ghosts of B16-F10 cells, generating choline, indicating that the enzyme can access and modulate and has activity against membrane phospholipids. Additionally, using Fluo-4, a calcium-sensitive fluorophore, it was shown that treatment of cells with phospholipase-D induced an increase in the calcium concentration in the cytoplasm, but without altering viability or causing damage to cells. Finally, based on the known endogenous activity of phospholipase-D as an inducer of cell proliferation and the fact that LiRecDT1 binds to the cell surface, hydrolyzing phospholipids to generate bioactive lipids, we employed LiRecDT1 as an exogenous source of phospholipase-D in B16-F10 cells. Treatment of the cells was effective in increasing their proliferation in a time- and concentration-dependent manner, especially in the presence of synthetic sphingomyelin in the medium. The results described herein indicate the ability of brown spider phospholipase-D to induce the generation of bioactive phospholipids, calcium influx into the cytoplasm and cell proliferation, suggesting that this molecule can be used as a bioactive tool for experimental protocols in cell biology.


Subject(s)
Antineoplastic Agents/pharmacology , Calcium Signaling/drug effects , Melanoma, Experimental/drug therapy , Phospholipase D/pharmacology , Phospholipids/metabolism , Serine Endopeptidases/metabolism , Spider Venoms/enzymology , Animals , Brown Recluse Spider , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Choline/metabolism , Cytosol/drug effects , Cytosol/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Melanoma, Experimental/metabolism , Phosphoric Diester Hydrolases , Recombinant Proteins/pharmacology , Sphingomyelins/metabolism
14.
Int J Biochem Cell Biol ; 44(1): 170-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22051631

ABSTRACT

Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.


Subject(s)
Biomarkers, Tumor/genetics , Spider Venoms/genetics , Spiders/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/immunology , Capillary Permeability/drug effects , Cloning, Molecular , Cross Reactions , Edema/etiology , Mice , Molecular Sequence Data , Rabbits , Spider Venoms/biosynthesis , Spider Venoms/chemistry , Spider Venoms/immunology , Spiders/genetics , Tumor Protein, Translationally-Controlled 1
SELECTION OF CITATIONS
SEARCH DETAIL
...