Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(1): e12751, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685398

ABSTRACT

The association between irritable bowel syndrome (IBS) and psychiatric and mood disorders may be more fundamental than was previously believed. Prenatal, perinatal, postnatal, and early-age conditions can have a key role in the development of IBS. Subthreshold mental disorders (SMDs) could also be a significant source of countless diverse diseases and may be a cause of IBS development. We hypothesize that stress-induced implicit memories may persist throughout life by epigenetic processes in the enteric nervous system (ENS). These stress-induced implicit memories may play an essential role in the emergence and maintenance of IBS. In recent decades, numerous studies have proven that hypnosis can improve the primary symptoms of IBS and also reduce noncolonic symptoms such as anxiety and depression and improve quality of life and cognitive function. These significant beneficial effects of hypnosis on IBS may be because hypnosis allows access to unconscious brain processes.

2.
Neurosci Biobehav Rev ; 131: 755-764, 2021 12.
Article in English | MEDLINE | ID: mdl-34619172

ABSTRACT

We provide a brief review about the significance of hypnosis with respect to applications and physiological processes in hypnotherapy. Our review concludes that hypnosis is a promising method to manage acute and chronic pain. In addition, we discuss indications pointing toward the view that hypnosis can induce changes in neuroplasticity possibly involving epigenetic mechanisms.


Subject(s)
Hypnosis , Epigenesis, Genetic , Humans , Hypnosis/methods , Neuronal Plasticity , Pain , Pain Management/methods
3.
J Integr Neurosci ; 14(3): 419-29, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336891

ABSTRACT

Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.


Subject(s)
Brain/metabolism , Photons , Animals , Humans , Models, Neurological , Neurons/metabolism
4.
Curr Neuropharmacol ; 9(2): 289-300, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22131938

ABSTRACT

Here, we show that volume neurotransmission and the redox property of dopamine, as well as redox-regulated processes at glutamate receptors, can contribute significantly to our understanding of schizophrenia. Namely, volume neurotransmission may play a key role in the development of dysconnectivity between brain regions in schizophrenic patients, which can cause abnormal modulation of NMDA-dependent synaptic plasticity and produce local paroxysms in deafferented neural areas. During synaptic transmission, neuroredox regulations have fundamental functions, which involve the excellent antioxidant properties and nonsynaptic neurotransmission of dopamine. It is possible that the effect of redox-linked volume neurotransmission (diffusion) of dopamine is not as exact as communication by the classical synaptic mechanism, so approaching the study of complex schizophrenic mechanisms from this perspective may be beneficial. However, knowledge of redox signal processes, including the sources and molecular targets of reactive species, is essential for understanding the physiological and pathophysiological signal pathways in cells and the brain, as well as for pharmacological design of various types of new drugs.

5.
J Photochem Photobiol B ; 103(2): 192-9, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21463953

ABSTRACT

The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, Bókkon, Dai and Antal (2011) [10] presented the first experimental proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat's whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by non-bleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negative afterimages is related retinal mechanisms, cortical neurons have also essential contribution in the interpretation and modulation of negative afterimages.


Subject(s)
Afterimage , Vision, Ocular , Animals , Luminescence , Rats , Retina/physiology
6.
J Integr Neurosci ; 10(1): 47-64, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21425482

ABSTRACT

Recently, we put forward a redox molecular hypothesis involving the natural biophysical substrate of visual perception and imagery. Here, we explicitly propose that the feedback and feedforward iterative operation processes can be interpreted in terms of a homunculus looking at the biophysical picture in our brain during visual imagery. We further propose that the brain can use both picture-like and language-like representation processes. In our interpretation, visualization (imagery) is a special kind of representation i.e., visual imagery requires a peculiar inherent biophysical (picture-like) mechanism. We also conjecture that the evolution of higher levels of complexity made the biophysical picture representation of the external visual world possible by controlled redox and bioluminescent nonlinear (iterative) biochemical reactions in the V1 and V2 areas during visual imagery. Our proposal deals only with the primary level of visual representation (i.e. perceived "scene").


Subject(s)
Feedback, Physiological/physiology , Photons , Retina/growth & development , Visual Cortex/growth & development , Visual Perception/physiology , Animals , Humans , Luminescent Proteins/analysis , Photic Stimulation/methods , Retina/chemistry , Visual Cortex/chemistry , Visual Pathways/chemistry , Visual Pathways/growth & development
7.
J Photochem Photobiol B ; 100(3): 160-6, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20584615

ABSTRACT

Recently, we have proposed a redox molecular hypothesis about the natural biophysical substrate of visual perception and imagery [1,6]. Namely, the retina transforms external photon signals into electrical signals that are carried to the V1 (striatecortex). Then, V1 retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into regulated ultraweak bioluminescent photons (biophotons) through redox processes within retinotopic visual neurons that make it possible to create intrinsic biophysical pictures during visual perception and imagery. However, the consensus opinion is to consider biophotons as by-products of cellular metabolism. This paper argues that biophotons are not by-products, other than originating from regulated cellular radical/redox processes. It also shows that the biophoton intensity can be considerably higher inside cells than outside. Our simple calculations, within a level of accuracy, suggest that the real biophoton intensity in retinotopic neurons may be sufficient for creating intrinsic biophysical picture representation of a single-object image during visual perception.


Subject(s)
Photons , Visual Perception/physiology , Free Radicals , Oxidation-Reduction , Retina/metabolism , Visual Cortex/metabolism
8.
Biosystems ; 101(1): 1-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20433895

ABSTRACT

Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.


Subject(s)
Attention/physiology , Brain Mapping/methods , Cortical Synchronization/methods , Evoked Potentials, Visual/physiology , Models, Neurological , Visual Cortex/physiology , Visual Perception/physiology , Animals , Energy Transfer/physiology , Humans
9.
Biosystems ; 96(2): 178-84, 2009 May.
Article in English | MEDLINE | ID: mdl-19428983

ABSTRACT

Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.


Subject(s)
Visual Perception , Animals , Brain/metabolism , Electron Transport Complex IV/metabolism , Epigenesis, Genetic , Luminescence , Mitochondria/enzymology , Oxidation-Reduction , Retina/metabolism , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...