Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38676178

ABSTRACT

Seismic methods are extensively used in coal mining for expanding resource discoveries and definition as well as for mine monitoring. However, the use of borehole seismic methods is relatively uncommon due to the high cost of borehole seismic acquisition using conventional downhole tools. The introduction of distributed acoustic sensing (DAS), which uses optical fibres to record seismic data, has dramatically increased the cost-effectiveness of borehole seismic methods. Fibre-optic cables are inexpensive and, once deployed in a borehole, can be abandoned or used later for further monitoring of the subsurface. The case study presented here concerns the use of DAS to record a 3D VSP (vertical seismic profiling) for coal seam exploration in Queensland, Australia. This study trialled effective strategies for deploying cables into boreholes and demonstrated how this technology could be incorporated into the standard coal exploration process. The final processing results produced a high-resolution 3D seismic cube where the coal seams below the basalt cover are clearly identifiable around the boreholes. Permanent installation of the fibre-optic cables into a set of boreholes provides immediate benefits of 3D seismic imaging and can create additional value in utilising these sensors for further discrete or continuous subsurface measurements, including stability monitoring of underground workings and detection of methane accumulations.

2.
Sensors (Basel) ; 23(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687957

ABSTRACT

Distributed acoustic sensing (DAS) is a promising technology for seismic data acquisition, particularly in downhole applications. However, downhole DAS measurements can be affected by the deployment method of the fibre-optic cable. These effects were explored in a field trial in two wells (one vertical and one deviated) drilled at the Otway International Test Centre. The trial in the vertical well shows that (1) fibre-optic cables cemented behind the casing provide data of the highest quality due to the best coupling to the formation, and (2) tubing-conveyed cable shows only slightly weaker coupling, but the data quality can be severely degraded by source-generated noise. A cable loosely suspended in the deviated well provided data quality comparable to that of the cemented DAS cable. To better understand the nature of the observed effects, the field experiments were supplemented by numerical modelling with a 1.5D full wave reflectivity algorithm (3D wave propagation in a 1D model), where cement, casing and wellbore were represented by infinite vertical layers. The results show that (1) a cement layer has only a slight effect (<5%) on the DAS amplitude; (2) the vertical strain in a liquid-filled borehole is comparable to that in the formation; and (3) the strain amplitude in the cable is of the same order of magnitude both in the formation and in the fluid. The strain in the cable is zero both when the cable's Poisson's ratio is zero and when the borehole fluid is air. The results confirm the feasibility of borehole DAS measurements with fibre-optic cables suspended in a borehole liquid (but not gas!).

3.
Sensors (Basel) ; 22(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36502212

ABSTRACT

DAS and geophones are the two most popular sensors for borehole seismic acquisition. As such, it is important to get a good understanding of how these two types of sensors compare to each other. The natural measurand for the techniques is different; millivolts are approximately proportional to particle velocities for geophones vs. changes in the phase of light linked to the changes in strain on the sensing fibre. This paper focuses on the experimental comparison of absolute values of these measurands derived from a VSP survey acquired in Curtin GeoLab training well. We describe the acquisition setup for the walk-away VSP acquired with DAS and geophones, allowing the direct comparison and the workflow, which we can use to represent the data in strain rate. Albeit this is unlikely to be universal, we find that the absolute values are similar for this experimental setup.

SELECTION OF CITATIONS
SEARCH DETAIL
...