Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 101: 106-115, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27838371

ABSTRACT

AIMS: In atrial fibrillation, increased function of the Na+/Ca2+-exchanger (NCX) is one among several electrical remodeling mechanisms. METHODS/RESULTS: Using the patch-clamp- and Ca2+ imaging-methods, we investigated atrial myocytes from NCX-homozygous-overexpressor (OE)- and heterozygous-knockout (KO)-mice and their corresponding wildtypes (WTOE; WTKO). NCX mediated Ca2+ extrusion capacity was reduced in KO and increased in OE. There was no evidence for structural or molecular remodeling. During a proarrhythmic pacing-protocol, the number of low amplitude delayed afterdepolarizations (DADs) was unaltered in OE vs. WTOE and KO vs. WTKO. However, DADs triggered full spontaneous action potentials (sAP) significantly more often in OE vs. WTOE (ratio sAP/DAD: OE:0.18±0.05; WTOE:0.02±0.02; p<0.001). Using the same protocol, a DAD triggered an sAP by tendency less often in KO vs. WTKO (p=0.06) and significantly less often under a more aggressive proarrhythmic protocol (ratio sAP/DAD: KO:0.01±0.003; WT KO: 0.12±0.05; p=0.007). The DAD amplitude was increased in OE vs. WTOE and decreased in KO vs. WTKO. There were no differences in SR-Ca2+-load, the number of spontaneous Ca2+-release-events or IKACh/IK1. CONCLUSIONS: Atrial myocytes with increased NCX expression exhibited increased vulnerability towards sAPs while atriomyocytes with reduced NCX expression were protected. The underlying mechanism consists of a modification of the DAD-amplitude by the level of NCX-activity. Thus, although the number of spontaneous Ca2+-releases and therefore DADs is unaltered, the higher DAD-amplitude in OE made a transgression of the voltage-threshold of an sAP more likely. These findings indicate that the level of NCX activity could influence triggered activity in atrial myocytes independent of possible remodeling processes.


Subject(s)
Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Sodium-Calcium Exchanger/metabolism , Action Potentials/genetics , Animals , Calcium/metabolism , Calcium Signaling , Female , Gene Expression , Male , Membrane Potentials/genetics , Mice , Mice, Transgenic , Myocardial Contraction/genetics , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium-Calcium Exchanger/genetics
2.
Curr Med Chem ; 21(11): 1330-5, 2014.
Article in English | MEDLINE | ID: mdl-24083605

ABSTRACT

In the search for novel antiarrhythmic strategies, the cardiac Na(+)/Ca(2+) exchanger (NCX) seems to be a promising target. Recent insights into the role of NCX in proarrhythmia stem from transgenic murine models with knockout or overexpression of NCX. There are significant differences regarding cellular electrophysiology, excitation-contraction coupling and Ca(2+) handling when comparing mice to higher mammal and most importantly human physiology. We here review findings derived from transgenic mouse models regarding the role of NCX in the generation of arrhythmia and discuss principle aspects to consider when translating physiological and pathophysiological mechanisms from mouse models into human physiology and the clinical context.


Subject(s)
Arrhythmias, Cardiac/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/physiopathology , Calcium/metabolism , Electrophysiologic Techniques, Cardiac , Humans , Mice , Mice, Transgenic , Translational Research, Biomedical
3.
Basic Res Cardiol ; 107(2): 247, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22327339

ABSTRACT

The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.


Subject(s)
Action Potentials/physiology , Arrhythmias, Cardiac/metabolism , Heart/physiology , Homeodomain Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Arrhythmias, Cardiac/genetics , Blotting, Western , Disease Models, Animal , Electrocardiography , Homeodomain Proteins/genetics , Mice , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...