Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38790699

ABSTRACT

Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-ß inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.

2.
Diagnostics (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38066755

ABSTRACT

Abnormal retrobulbar hemodynamics have been linked to the development of various ocular diseases, including glaucoma, age-related macular degeneration, and diabetic retinopathy. Additionally, altered retrobulbar blood flow has been observed in patients with severe cardiovascular diseases, including carotid artery occlusion, stroke, heart failure, and acute coronary syndrome. Due to the complex and intricate anatomy of retrobulbar blood vessels and their location behind the eyeball, measurement of retrobulbar blood flow and vascular reactivity, as well as the interpretation of the findings, are challenging. Various methods, such as color Doppler imaging, computed tomography angiography or magnetic resonance imaging, have been employed to assess retrobulbar blood flow velocities in vivo. Color Doppler imaging represents a fast and non-invasive method to measure retrobulbar blood flow velocities in vivo. While no information about vessel diameter can be gained performing this method, computed tomography angiography and magnetic resonance imaging provide information about vessel diameter and detailed information on the anatomical course. Additionally, ex vivo studies, such as myography, utilizing genetically modified animal models may provide high optical resolution for functional vascular investigations in these small vessels. To our best knowledge, this is the first review, presenting a detailed overview of methods aiming to evaluate retrobulbar blood flow and vascular reactivity in both humans and laboratory animals. Furthermore, we will summarize the disturbances observed in retrobulbar blood flow in retinal, optic nerve, and cardiovascular diseases.

3.
Redox Biol ; 68: 102967, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006824

ABSTRACT

Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.


Subject(s)
Antioxidants , Lens, Crystalline , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Eye/metabolism , Eye/pathology , Oxidative Stress , Lens, Crystalline/metabolism , Lens, Crystalline/pathology
4.
Antioxidants (Basel) ; 12(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508003

ABSTRACT

Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.

5.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902129

ABSTRACT

ß-adrenoreceptors (ARs) are members of the superfamily of G-protein-coupled receptors (GPCRs), and are activated by catecholamines, such as epinephrine and norepinephrine. Three subtypes of ß-ARs (ß1, ß2, and ß3) have been identified with different distributions among ocular tissues. Importantly, ß-ARs are an established target in the treatment of glaucoma. Moreover, ß-adrenergic signaling has been associated with the development and progression of various tumor types. Hence, ß-ARs are a potential therapeutic target for ocular neoplasms, such as ocular hemangioma and uveal melanoma. This review aims to discuss the expression and function of individual ß-AR subtypes in ocular structures, as well as their role in the treatment of ocular diseases, including ocular tumors.


Subject(s)
Eye Diseases , Melanoma , Humans , Receptors, Adrenergic, beta/metabolism , Melanoma/metabolism , Norepinephrine , Epinephrine/therapeutic use , Receptors, Adrenergic, beta-2/metabolism
6.
Front Med (Lausanne) ; 9: 1069449, 2022.
Article in English | MEDLINE | ID: mdl-36714119

ABSTRACT

Disturbances of retinal perfusion are involved in the onset and maintenance of several ocular diseases, including diabetic retinopathy, glaucoma, and retinal vascular occlusion. Hence, knowledge on ocular vascular anatomy and function is highly relevant for basic research studies and for clinical judgment and treatment. The retinal vasculature is composed of the superficial, intermediate, and deep vascular layer. Detection of changes in blood flow and vascular diameter especially in smaller vessels is essential to understand and to analyze vascular diseases. Several methods to evaluate blood flow regulation in the retina have been described so far, but no gold standard has been established. For highly reliable assessment of retinal blood flow, exact determination of vessel diameter is necessary. Several measurement methods have already been reported in humans. But for further analysis of retinal vascular diseases, studies in laboratory animals, including genetically modified mice, are important. As for mice, the small vessel size is challenging requiring devices with high optic resolution. In this review, we recapitulate different methods for retinal blood flow and vessel diameter measurement. Moreover, studies in humans and in experimental animals are described.

7.
TH Open ; 5(2): e113-e124, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33870075

ABSTRACT

Background Intimal calcification typically develops in advanced atherosclerosis, and microcalcification may promote plaque progression and instability. Conversely, intraplaque hemorrhage and erythrocyte extravasation may stimulate osteoblastic differentiation and intralesional calcium phosphate deposition. The presence of erythrocytes and their main cellular components (membranes, hemoglobin, and iron) and colocalization with calcification has never been systematically studied. Methods and Results We examined three types of diseased vascular tissue specimens, namely, degenerative aortic valve stenosis ( n = 46), atherosclerotic carotid artery plaques ( n = 9), and abdominal aortic aneurysms ( n = 14). Biomaterial was obtained from symptomatic patients undergoing elective aortic valve replacement, carotid artery endatherectomy, or aortic aneurysm repair, respectively. Serial sections were stained using Masson-Goldner trichrome, Alizarin red S, and Perl's iron stain to visualize erythrocytes, extracelluar matrix and osteoid, calcium phosphate deposition, or the presence of iron and hemosiderin, respectively. Immunohistochemistry was employed to detect erythrocyte membranes (CD235a), hemoglobin or the hemoglobin scavenger receptor (CD163), endothelial cells (CD31), myofibroblasts (SMA), mesenchymal cells (osteopontin), or osteoblasts (periostin). Our analyses revealed a varying degree of intraplaque hemorrhage and that the majority of extravasated erythrocytes were lysed. Osteoid and calcifications also were frequently present, and erythrocyte membranes were significantly more prevalent in areas with calcification. Areas with extravasated erythrocytes frequently contained CD163-positive cells, although calcification also occurred in areas without CD163 immunosignals. Conclusion Our findings underline the presence of extravasated erythrocytes and their membranes in different types of vascular lesions, and their association with areas of calcification suggests an active role of erythrocytes in vascular disease processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...