Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(24): 244102, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27369492

ABSTRACT

In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms.

2.
Molecules ; 19(4): 5301-12, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24762967

ABSTRACT

We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.


Subject(s)
Camphanes/chemistry , Deuterium/chemistry , Fluorocarbons/chemistry , Magnetic Resonance Spectroscopy , Quantum Theory , Thermodynamics , Vibration
3.
J Chem Phys ; 139(22): 224101, 2013 Dec 14.
Article in English | MEDLINE | ID: mdl-24329050

ABSTRACT

In a previous publication, we have discussed the usage of tensor decomposition in the canonical polyadic (CP) tensor format for electronic structure methods. There, we focused on two-electron integrals and second order Møller-Plesset perturbation theory (MP2). In this work, we discuss the CP format for Coupled Cluster (CC) theory and present a pilot implementation for the Coupled Cluster Doubles method. We discuss the iterative solution of the CC amplitude equations using tensors in CP representation and present a tensor contraction scheme that minimizes the effort necessary for the rank reductions during the iterations. Furthermore, several details concerning the reduction of complexity of the algorithm, convergence of the CC iterations, truncation errors, and the choice of threshold for chemical accuracy are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...