Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139631

ABSTRACT

Partially automated driving functions (SAE Level 2) can control a vehicle's longitudinal and lateral movements. However, taking over the driving task involves automation risks that the driver must manage. In severe accidents, the driver's ability to avoid a collision must be assessed, considering their expected reaction behavior. The primary goal of this study is to generate essential data on driver reaction behavior in case of malfunctions in partially automated driving functions for use in legal affairs. A simulator study with two scenarios involving 32 subjects was conducted for this purpose. The first scenario investigated driver reactions to system limitations during cornering. The results show that none of the subjects could avoid leaving their lane and moving into the oncoming lane and, therefore, could not control the situation safely. Due to partial automation, we could also identify a new part of the reaction time, the hands-on time, which leads to increased steering reaction times of 1.18 to 1.74 s. The second scenario examined driver responses to phantom braking caused by AEBS. We found that 25 of the 32 subjects could not override the phantom braking by pressing the accelerator pedal, although 16 subjects were informed about the system analog to the actual vehicle manuals. Overall, the study suggests that the current legal perspective on vehicle control and the expected driver reaction behavior for accident avoidance should be reconsidered.


Subject(s)
Automobile Driving , Humans , Accidents, Traffic/prevention & control , Reaction Time/physiology , Automation , Phantoms, Imaging
2.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591252

ABSTRACT

The relevance of scientific investigations, whether simulative or empirical, is strongly related to the environment used and the scenarios associated with it. Within the field of cooperative intelligent transport systems, use-cases are defined to describe the benefits of applications. This has already been conducted in the available safety-relevant Day 1 applications longitudinal and intersection collision risk warning through the respective technical specifications. However, the relevance of traffic scenarios is always a function of accident severity and frequency of a retrospective consideration of accident databases. In this study, vehicle-to-vehicle scenarios with high frequency and/or severe personal injuries are therefore determined with the help of the CISS database and linked to the use-cases of the safety-relevant Day 1 applications. The relevance of the scenarios thus results on the one hand from the classical parameters of retrospective accident analysis and on the other hand from the coverage by the named vehicle-to-x applications. As a result, accident scenarios with oncoming vehicles are the most relevant scenarios for investigations with cooperative intelligent transport systems. In addition, high coverage of the most critical scenarios within the use-cases of longitudinal and intersection collision risk warning is already apparent.


Subject(s)
Accidents, Traffic , Accidents, Traffic/prevention & control , Computer Simulation , Databases, Factual , Retrospective Studies
3.
4.
Neuropsychologia ; 47(10): 2133-44, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19375433

ABSTRACT

Neuropsychological studies in humans provide evidence for a variety of extrastriate cortical areas involved in visual motion perception. Multiple mechanisms underlying processing of different motion types have been proposed, however, support for cortical specialization has remained controversial so far. We therefore studied motion perception in 23 patients with focal lesions to various cortical areas and considered translational motion, heading from radial flow, as well as biological motion. Patients' detection thresholds were compared with age-specific data from a large healthy control sample (n=122). Elevated thresholds and significant threshold asymmetries between both visual hemifields were defined as deficits. Contrary to prevalent opinion, we found a high prevalence of motion deficits in our sample. Impairment was restricted to a specific motion type in 10 patients, whereas only a single patient showed a deficit for multiple motion types. Functional areas were determined by lesion density plots and by comparison between patients with and without a specific deficit. Results emphasize a dissociation between basic motion processing and processing of complex motion. Anatomical analysis confirmed critical occipito-temporo-parietal areas for perception of translational motion. In contrast, heading perception from radial flow proved to be remarkably robust to most lesions. We exclusively identified the frontal eye fields as a critical structure. Biological motion perception relied on distinct pathways involving temporal, parietal, and frontal areas. Although precise functional roles of identified areas cannot be determined conclusively, results clearly indicate regional specialization for motion types of different complexity. We propose a network for motion processing involving widely distributed cortical areas.


Subject(s)
Brain Injuries/complications , Brain Injuries/pathology , Cerebral Cortex/pathology , Motion Perception/physiology , Nerve Net/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Mapping , Contrast Sensitivity , Female , Humans , Male , Middle Aged , Nervous System Diseases/etiology , Neuropsychological Tests , Photic Stimulation/methods , Predictive Value of Tests , Psychophysics , Visual Acuity/physiology , Visual Field Tests/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...