Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 161-166, 2023 01.
Article in English | MEDLINE | ID: mdl-36308551

ABSTRACT

Clozapine is an atypical neuroleptic used to manage treatment-resistant schizophrenia which is known to inhibit cardiac hERG/KV11.1 potassium channels, a pharmacological property associated with increased risk of potentially fatal Torsades de Pointes (TdP) and sudden cardiac death (SCD). Yet, the long-standing clinical practice of clozapine does not show a consistent association with increased incidence of TdP, although SCD is considerably higher among schizophrenic patients than in the general population. Here, we have established the inhibitory profile of clozapine at the seven cardiac ion currents proposed by the ongoing comprehensive in vitro pro-arrhythmia (CiPA) initiative to better predict new drug cardio-safety risk. We found that clozapine inhibited all CiPA currents tested with the following rank order of potency: KV11.1 > NaV1.5 (late current) ≈ CaV1.2 ≈ NaV1.5 (peak current) ≈ KV7.1 > KV4.3 > Kir2.1 (outward current). Half-maximal inhibitory concentrations (IC50) at the repolarizing KV11.1 and KV7.1 channels, and at the depolarizing CaV1.2 and NaV1.5 channels fell within a narrow half-log 3-10 µM concentration range, suggesting that mutual compensation could explain the satisfactory arrhythmogenic cardio-safety profile of clozapine. Although the IC50 values determined herein using an automated patch-clamp (APC) technique are at the higher end of clozapine plasmatic concentrations at target therapeutic doses, this effective antipsychotic appears prone to distribute preferentially into the cardiac tissue, which supports the clinical relevance of our in vitro pharmacological findings.


Subject(s)
Antipsychotic Agents , Clozapine , Torsades de Pointes , Humans , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Ether-A-Go-Go Potassium Channels , Ion Channels , Torsades de Pointes/chemically induced , Arrhythmias, Cardiac , DNA-Binding Proteins , ERG1 Potassium Channel
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 735-740, 2022 06.
Article in English | MEDLINE | ID: mdl-35412073

ABSTRACT

Drinking fresh grapefruit juice is associated with a significant prolongation of the QT segment on the electrocardiogram (ECG) in healthy volunteers. Among the prominent polyphenols contained in citrus fruits and primarily in grapefruit, the flavonoid naringenin is known to be a blocker of the human ether-a-go-go related gene (hERG) potassium channel. Here we hypothesized that naringenin could interfere with other major ion channels shaping the cardiac ventricular action potential (AP). To test this hypothesis, we examined the effects of naringenin on the seven channels comprising the Comprehensive in vitro Pro-Arrhythmia (CiPA) ion channel panel for early arrhythmogenic risk assessment in drug discovery and development. We used automated population patch-clamp of human ion channels heterologously expressed in mammalian cells to evaluate half-maximal inhibitory concentrations (IC50). Naringenin blocked all CiPA ion channels tested with IC50 values in the 30-100 µM concentration-range. The rank-order of channel sensitivity was the following: hERG > Kir2.1 > NaV1.5 (late current) > NaV1.5 (peak current) > KV7.1 > KV4.3 > CaV1.2. This multichannel inhibitory profile of naringenin suggests exercising caution when large amounts of grapefruit juice or other citrus juices enriched in this flavonoid polyphenol are drunk in conjunction with QT prolonging drugs or by carriers of congenital long-QT syndromes.


Subject(s)
Citrus paradisi , Flavanones , Animals , Arrhythmias, Cardiac , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/physiology , Flavanones/pharmacology , Humans , Ion Channels , Mammals , Patch-Clamp Techniques , Polyphenols/pharmacology
3.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34863995

ABSTRACT

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Heart/drug effects , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Ion Channels/drug effects , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Electrophysiologic Techniques, Cardiac , Ether-A-Go-Go Potassium Channels , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Rabbits , Stereoisomerism
4.
Assay Drug Dev Technol ; 17(3): 89-99, 2019 04.
Article in English | MEDLINE | ID: mdl-30835490

ABSTRACT

Inwardly rectifying IK1 potassium currents of the heart control the resting membrane potential of ventricular cardiomyocytes during diastole and contribute to their repolarization after each action potential. Mutations in the gene encoding Kir2.1 channels, which primarily conduct ventricular IK1, are associated with inheritable forms of arrhythmias and sudden cardiac death. Therefore, potential iatrogenic inhibition of Kir2.1-mediated IK1 currents is a cardiosafety concern during new drug discovery and development. Kir2.1 channels are part of the panel of cardiac ion channels currently considered for refined early compound risk assessment within the Comprehensive in vitro Proarrhythmia Assay initiative. In this study, we have validated a cell-based assay allowing functional quantification of Kir2.1 inhibitors using whole-cell recordings of Chinese hamster ovary cells stably expressing human Kir2.1 channels. We reproduced key electrophysiological and pharmacological features known for native IK1, including current enhancement by external potassium and voltage- and concentration-dependent blockade by external barium. Furthermore, the Kir inhibitors ML133, PA-6, and chloroquine, as well as the multichannel inhibitors chloroethylclonidine, chlorpromazine, SKF-96365, and the class III antiarrhythmic agent terikalant demonstrated slowly developing inhibitory activity in the low micromolar range. The robustness of this assay authorizes medium throughput screening for cardiosafety purposes and could help to enrich the currently limited Kir2.1 pharmacology.


Subject(s)
Automation , Chloroquine/pharmacology , Imidazoles/pharmacology , Pentamidine/pharmacology , Phenanthrolines/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , CHO Cells , Chloroquine/chemistry , Cricetulus , Dose-Response Relationship, Drug , Electrophysiological Phenomena , Humans , Imidazoles/chemistry , Molecular Structure , Pentamidine/analogs & derivatives , Pentamidine/chemistry , Phenanthrolines/chemistry , Potassium Channels, Inwardly Rectifying/metabolism
5.
Methods Mol Biol ; 1641: 187-199, 2017.
Article in English | MEDLINE | ID: mdl-28748465

ABSTRACT

The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Patch-Clamp Techniques/methods , Action Potentials/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Electrophysiology , Humans , Protein Binding , Quantitative Structure-Activity Relationship , Torsades de Pointes/metabolism
6.
Nitric Oxide ; 12(2): 61-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15740979

ABSTRACT

There are conflicting data regarding the role of nitric oxide (NO) produced by inducible NO synthase (iNOS) in the pathophysiology of traumatic brain injury (TBI). In this report, we evaluated the effect of a potent selective (iNOS) inhibitor, 1400W, on histopathological outcome following TBI in a rat model of lateral fluid percussion brain injury. First, to design an appropriate treatment protocol, the parallel time courses of iNOS and neuronal NOS (nNOS) gene expression, protein synthesis, and activity were investigated. Early induction of iNOS gene was observed in the cortex of injured rats, from 6 to 72 h with a peak at 24 h. Similarly, iNOS protein was detected from 24 to 72 h and de novo synthesized iNOS was functionally active, as measured by Ca2+-independent NOS activity. The kinetic studies of nNOS showed discrepancies, since nNOS gene expression and protein synthesis were constant in the cortex of injured rats from 24 to 72 h, while Ca2+-dependent constitutive NOS activity was markedly decreased at 24 h, persisting up to 72 h. Second, treatment with 1400W, started as a bolus of 20 mg kg-1 (s.c.) at 18 h post-TBI, followed by s.c.-infusion at a rate of 2.2 mg kg-1 h-1 between 18 and 72 h, reduced by 64% the brain lesion volume at 72 h. However, the same treatment paradigm initiated 24 h post-TBI did not have any effect. In conclusion, administration of a selective iNOS inhibitor, 1400W, even delayed by 18 h improves histopathological outcome supporting a detrimental role for iNOS induction after TBI.


Subject(s)
Amidines/therapeutic use , Benzylamines/therapeutic use , Brain Injuries/drug therapy , Brain Injuries/pathology , Enzyme Inhibitors/therapeutic use , Nitric Oxide Synthase/antagonists & inhibitors , Amidines/pharmacology , Animals , Benzylamines/pharmacology , Brain Injuries/enzymology , Calcium/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/enzymology , Nitric Oxide Synthase/biosynthesis , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Rats , Rats, Sprague-Dawley , Time Factors
7.
CNS Drug Rev ; 10(2): 147-66, 2004.
Article in English | MEDLINE | ID: mdl-15179444

ABSTRACT

The development of selective ligands targeting neuronal nicotinic acetylcholine receptors to alleviate symptoms associated with neurodegenerative diseases presents the advantage of affecting multiple deficits that are the hallmarks of these pathologies. TC-1734 is an orally active novel neuronal nicotinic agonist with high selectivity for neuronal nicotinic receptors. Microdialysis studies indicate that TC-1734 enhances the release of acetylcholine from the cortex. TC-1734, by either acute or repeated administration, exhibits memory enhancing properties in rats and mice and is neuroprotective following excitotoxic insult in fetal rat brain in cultures and against alterations of synaptic transmission induced by deprivation of glucose and oxygen in hippocampal slices. At submaximal doses, TC-1734 produced additive cognitive effects when used in combination with tacrine or donepezil. Unlike (-)-nicotine, behavioral sensitization does not develop following repeated administration of TC-1734. Its pharmacokinetic (PK) profile (half-life of 2 h) contrasts with the long lasting improvement in working memory (18 h) demonstrating that cognitive improvement extends beyond the lifetime of the compound. The very low acute toxicity of TC-1734 and its receptor activity profile provides additional mechanistic basis for its suggested potential as a clinical candidate. TC-1734 was very well tolerated in acute and chronic oral toxicity studies in mice, rats and dogs. Phase I clinical trials demonstrated TC-1734's favorable pharmacokinetic and safety profile by acute oral administration at doses ranging from 2 to 320 mg. The bioavailability, pharmacological, pharmacokinetic, and safety profile of TC-1734 provides an example of a safe, potent and efficacious neuronal nicotinic modulator that holds promise for the management of the hallmark symptomatologies observed in dementia.


Subject(s)
Antidepressive Agents/pharmacology , Cognition/drug effects , Neuroprotective Agents/pharmacology , Nicotinic Agonists/pharmacology , Pyridines/pharmacology , Sympathomimetics/pharmacology , Administration, Oral , Adolescent , Adrenocorticotropic Hormone/drug effects , Adrenocorticotropic Hormone/metabolism , Adult , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cholinesterase Inhibitors/pharmacology , Discrimination Learning/drug effects , Dogs , Humans , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Middle Aged , Motor Activity/drug effects , Neuroprotective Agents/metabolism , Nicotinic Agonists/metabolism , Pyridines/chemistry , Pyridines/metabolism , Rats , Receptors, Nicotinic/metabolism , Reference Values , Sympathomimetics/metabolism , Toxicity Tests, Chronic
8.
Med Phys ; 30(7): 1683-93, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12906185

ABSTRACT

In this investigation, we describe a quantitative technique to measure coronary motion, which can be correlated with cardiac image quality using multislice computed tomography (MSCT) scanners. MSCT scanners, with subsecond scanning, thin-slice imaging (sub-millimeter) and volume scanning capabilities have paved the way for new clinical applications like noninvasive cardiac imaging. ECG-gated spiral CT using MSCT scanners has made it possible to scan the entire heart in a single breath-hold. The continuous data acquisition makes it possible for multiple phases to be reconstructed from a cardiac cycle. We measure the position and three-dimensional velocities of well-known landmarks along the proximal, mid, and distal regions of the major coronary arteries [left main (LM), left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX)] during the cardiac cycle. A dynamic model (called the "delay algorithm") is described which enables us to capture the same physiological phase or "state" of the anatomy during the cardiac cycle as the instantaneous heart rate varies during the spiral scan. The coronary arteries are reconstructed from data obtained during different physiological cardiac phases and we correlate image quality of different parts of the coronary anatomy with phases at which minimum velocities occur. The motion characteristics varied depending on the artery, with the highest motion being observed for RCA. The phases with the lowest mean velocities provided the best visualization. Though more than one phase of relative minimum velocity was observed for each artery, the most consistent image quality was observed during mid-diastole ("diastasis") of the cardiac cycle and was judged to be superior to other reconstructed phases in 92% of the cases. In the process, we also investigated correlation between cardiac arterial states and other measures of motion, such as the left ventricular volume during a cardiac cycle, which earlier has been demonstrated as an example of how anatomic-specific information can be used in a knowledge-based cardiac CT algorithm. Using these estimates in characterizing cardiac motion also provides realistic simulation models for higher heart rates and also in optimizing volume reconstructions for individual segments of the cardiac anatomy.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Vessels/physiopathology , Electrocardiography/methods , Heart/diagnostic imaging , Heart/physiopathology , Imaging, Three-Dimensional/methods , Movement , Aged , Algorithms , Coronary Angiography/methods , Female , Humans , Male , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity , Statistics as Topic , Subtraction Technique , Tomography, Spiral Computed
9.
Mov Disord ; 16(6): 1110-4, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11748743

ABSTRACT

An abnormal increase in the activity of neurons of the subthalamic nucleus is a key pathophysiological feature of Parkinson's disease. We sought to determine whether riluzole, a sodium channel inhibitor that interferes with glutamatergic neurotransmission, affects neuronal activity in this brain region. Intravenous administration of riluzole reduced the discharge rate of subthalamic neurons in rats with 6-OHDA-induced lesions of the midbrain. By contrast, no effect was observed in nonlesioned control animals. This property may contribute to the neuroprotective effects of riluzole in animal models of PD through the modulation of the glutamatergic inputs these neurons feedback to nigral dopaminergic neurons.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/physiopathology , Riluzole/pharmacology , Sodium Channel Blockers/pharmacology , Substantia Nigra/drug effects , Subthalamic Nucleus/drug effects , Adrenergic Agents , Animals , Functional Laterality , Male , Models, Animal , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Substantia Nigra/pathology , Subthalamic Nucleus/pathology , Subthalamic Nucleus/physiopathology
10.
J Pharmacol Exp Ther ; 299(1): 314-22, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11561094

ABSTRACT

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonists are of potential interest for the treatment of certain acute and chronic neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, we describe the synthesis and pharmacological properties of 9-carboxymethyl-4-oxo-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-phosphonic acid (RPR 119990). The compound displaced [3H]AMPA from rat cortex membranes with a K(i) of 107 nM. In oocytes expressing human recombinant AMPA receptors, RPR 119990 depressed ion flux with a K(B) of 71 nM. The antagonist properties of this compound were confirmed on rat native AMPA receptors in cerebella granule neurons in culture and in hippocampal slices where it antagonized electrophysiological responses with IC50 values of 50 and 93 nM, respectively. RPR 119990 antagonized hippocampal evoked responses in vivo, demonstrating brain penetration at active concentrations. RPR 119990 is a potent anticonvulsant in the supramaximal electroshock in the mouse with an ED50 of 2.3 mg/kg 1 h post s.c. administration, giving it a workably long action. Pharmacokinetic studies show good passage into the plasma after subcutaneous administration, whereas brain penetration is low but with slow elimination. This compound was found active in a transgenic mouse model of familial amyotrophic lateral sclerosis (SOD1-G93A) where it was able to improve grip muscle strength and glutamate uptake from spinal synaptosomal preparations, and prolong survival with a daily dose of 3 mg/kg s.c.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Imidazoles/pharmacology , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Amyotrophic Lateral Sclerosis/pathology , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Disease Progression , Electrophysiology , Electroshock , Excitatory Amino Acid Antagonists/chemical synthesis , Excitatory Amino Acid Antagonists/pharmacokinetics , Glutamic Acid/drug effects , Imidazoles/chemistry , Imidazoles/pharmacokinetics , In Vitro Techniques , Longevity/drug effects , Mice , Mice, Transgenic , Muscle, Skeletal/drug effects , Neurons/drug effects , Patch-Clamp Techniques , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Superoxide Dismutase/genetics
11.
Bioorg Med Chem Lett ; 11(9): 1205-10, 2001 May 07.
Article in English | MEDLINE | ID: mdl-11354378

ABSTRACT

The overstimulation of excitatory amino acid receptors such as the glutamate AMPA receptor has been implicated in the physiopathogenesis of epilepsy as well as in acute and chronic neurodegenerative disorders. An original series of readily water soluble 4-oxo-10-substituted-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives was synthesized. The most potent derivative 6a exhibited nanomolar binding affinity (IC50 = 35nM) and antagonist activity (IC50 = 6nM) at ionotropic AMPA receptor. This compound also demonstrated potent anticonvulsant properties in MES in mice and rats with long durations of action with ED50 values in the 1-3 mg/kg dose range following ip and iv administration.


Subject(s)
Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Electroshock , Injections, Intraperitoneal , Injections, Intravenous , Isoquinolines/pharmacology , Mice , Quinoxalines/pharmacology , Rats , Structure-Activity Relationship , Tetrazoles/pharmacology , Xenopus
12.
Bioorg Med Chem Lett ; 11(2): 127-32, 2001 Jan 22.
Article in English | MEDLINE | ID: mdl-11206442

ABSTRACT

A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.


Subject(s)
Excitatory Amino Acid Antagonists/chemical synthesis , Excitatory Amino Acid Antagonists/pharmacology , Pyrazinamide/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/antagonists & inhibitors , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Combinatorial Chemistry Techniques , Disease Models, Animal , Excitatory Amino Acid Antagonists/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Inhibitory Concentration 50 , Male , Mice , Oocytes/drug effects , Pyrazinamide/analogs & derivatives , Pyrazinamide/chemical synthesis , Pyrazinamide/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Structure-Activity Relationship
13.
Behav Brain Res ; 118(1): 61-5, 2001 Jan 08.
Article in English | MEDLINE | ID: mdl-11163634

ABSTRACT

The rewarding effects of morphine, cocaine, amphetamine and nicotine were evaluated in CB1 receptor knockout mice by means of an intravenous self-administration model. Experiments were carried out on drug-naive animals using a nose-poking response (NPR)-like as operandum. The results of the present study indicate that morphine did not induce intravenous self-administration in mutant CB1 receptor knockout mice, whereas it was significantly self-administered by the corresponding wild type mice. On the contrary, cocaine, amphetamine and nicotine were self-administered to the same extent by both wild type and CB1 receptor knockout mice. These data clearly indicate that the CB1 cannabinoid receptor is essential not only for the expression of cannabinoid reinforcing effects but also for the modulation of morphine rewarding effects. The specificity of such interaction is supported by the finding that contrary to morphine, cocaine, d-amphetamine and nicotine were self-administered by mice at the same extent either in presence or in absence of the CB1 receptor.


Subject(s)
Behavior, Addictive/metabolism , Cannabinoids/metabolism , Dopamine Uptake Inhibitors/pharmacology , Narcotics/pharmacology , Nicotinic Agonists/pharmacology , Receptors, Drug/drug effects , Amphetamine/administration & dosage , Amphetamine/pharmacology , Animals , Cocaine/administration & dosage , Cocaine/pharmacology , Male , Mice , Mice, Knockout , Morphine/administration & dosage , Morphine/pharmacology , Narcotics/administration & dosage , Nicotine/administration & dosage , Nicotine/pharmacology , Receptors, Cannabinoid , Receptors, Drug/metabolism , Reward
14.
J Cereb Blood Flow Metab ; 21(1): 15-21, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11149663

ABSTRACT

Nitric oxide (NO) has been suspected to mediate brain damage during ischemia. Here the authors studied the effects of an antisense oligodeoxynucleotide (ODN) directed against the inducible isoform of NO synthase (iNOS) in a model of transient focal cerebral ischemia in rats. Treatment consisted of seven intracerebroventricular injections of a phosphodiester/phosphorothioate chimera ODN (3 nmol each) at 12-hour intervals, and was initiated 12 hours before a 2-hour occlusion of the left middle cerebral artery and common carotid artery. Outcomes were measured three days after ischemia. When compared with animals treated with vehicle or an appropriate random non-sense control ODN sequence, the antisense treatment reduced the lesion volume by 30% and significantly improved recovery of sensorimotor functions, as assessed on a neuroscore. This effect was associated with a decrease in iNOS expression, as assessed by Western blot, a 39% reduction in iNOS enzymatic activity evaluated as Ca2+-independent NOS activity, and a 37% reduction in nitrotyrosine formation, reflecting protein nitration by NO-derived peroxynitrite. These findings provide new evidence that inhibition of iNOS may be of interest for the treatment of stroke.


Subject(s)
Brain Damage, Chronic/prevention & control , Brain/pathology , Cerebral Infarction/prevention & control , Ischemic Attack, Transient/physiopathology , Nitric Oxide Synthase/genetics , Oligodeoxyribonucleotides, Antisense/pharmacology , Animals , Brain/drug effects , Brain Damage, Chronic/pathology , Cerebral Infarction/pathology , Cerebral Ventricles/physiology , Injections, Intraventricular , Ischemic Attack, Transient/pathology , Male , Nitric Oxide Synthase Type II , Oligodeoxyribonucleotides, Antisense/administration & dosage , Rats , Rats, Sprague-Dawley
15.
J Neurol Sci ; 180(1-2): 55-61, 2000 Nov 01.
Article in English | MEDLINE | ID: mdl-11090865

ABSTRACT

The neuroprotective drug riluzole (Rilutek) is a sodium channel blocker and anti-excitotoxic drug which is marketed for the treatment of amyotrophic lateral sclerosis (ALS). Previous studies have shown that riluzole prolongs survival of transgenic mice harboring the mutated form of Cu,Zn-superoxide dismutase found in familial forms of the human disease. In this study we have examined the effect of treatment with riluzole in mice suffering from progressive motor neuronopathy (pmn), a hereditary autosomal recessive wasting disease which shares some symptoms of ALS. These mutants display hind limb weakness starting during the 3rd week of life and leading to paralysis and death during the 7th week of life. Daily treatment with 8 mg/kg of riluzole by oral route significantly retarded the appearance of paralysis, increased life span and improved motor performance on grip test and electromyographic results in the early stage of the disease. There was no effect of riluzole on weight gain. These data demonstrate that riluzole significantly prolongs life span, retards the onset of paralysis and slows the evolution of functional parameters connected with muscle strength in the pmn mouse model of motor neuron disease.


Subject(s)
Motor Neuron Disease/drug therapy , Muscle Weakness/prevention & control , Riluzole/pharmacology , Survival Rate , Animals , Body Weight/drug effects , Disease Models, Animal , Hand Strength/physiology , Mice , Mice, Transgenic/genetics , Motor Neuron Disease/physiopathology , Muscle Weakness/drug therapy , Muscle Weakness/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Treatment Outcome
16.
J Acoust Soc Am ; 108(4): 1435-42, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11051469

ABSTRACT

It was reported to the first author that a female dog-wolf mix showed anomalously rough-sounding vocalization. Spectral analysis of recordings of the vocalization revealed frequency occurrences of subharmonics, biphonation (two independent pitches) and chaos. Since these nonlinear phenomena are currently widely discussed as integral to mammalian vocalization [Wilden et al., Bioacoustics 9, 171-196 (1988)] or as indicators of vocal pathologies [Herzel et al., J. Speech Hearing Res. 37, 1008-1019 (1994); Riede et al., Z. Sgtkde 62 Suppl: 198-203 (1997)], we sought to understand the production mechanism of the observed vocal instabilities. First the frequency of nonlinear phenomena in the calls was determined for the female and four additional individuals. It turned out that these phenomena appear, but much less frequently in the repertoire of the four other animals. The larynges of the female and two other individuals were dissected post mortem. There was no apparent asymmetry of the vocal folds but a slight asymmetry of the arytenoid cartilages. The most pronounced difference, however, was an upward extension of both vocal folds of the female. This feature is reminiscent of "vocal lips" (syn. "vocal membranes") in some primates and bats. Spectral analysis of the female's voice showed clear similarities with an intensively studied voice of a human who produces biphonation intentionally. Finally, the possible communicative relevance of nonlinear phenomena is discussed.


Subject(s)
Dogs/physiology , Sound Spectrography , Vocalization, Animal/physiology , Wolves/physiology , Animals , Female , Fourier Analysis , Humans , Hybridization, Genetic , Male , Species Specificity , Vocal Cords/physiology
17.
Bioorg Med Chem ; 8(8): 2211-7, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11003165

ABSTRACT

Water soluble 8-methylureido-10-amino-10-methyl-imidazo[1,2-a]indeno[1,2-e]pyraz ine-4-one 4 represents a novel class of highly potent and selective AMPA receptors antagonists with in vivo activity. The dextrorotatory isomer (+)-4 was found to display the highest affinity with an IC50 of 10 nM. It also exhibited very good anticonvulsant effects after i.p., s.c. and i.v. administration in mice subjected to electrical convulsions (MES) and i.p. in audiogenic seizure-e in DBA/2 mice (ED50's < or = 10 mg/kg).


Subject(s)
Anticonvulsants/chemical synthesis , Imidazoles/chemistry , Imidazoles/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Anticonvulsants/pharmacology , Brain Chemistry , Cerebral Cortex/metabolism , Imidazoles/metabolism , Kainic Acid/pharmacology , Male , Mice , Microinjections , Molecular Structure , Oocytes/physiology , Patch-Clamp Techniques , Pyrazines/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radioligand Assay , Rats , Stereoisomerism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
18.
J Med Chem ; 43(12): 2371-81, 2000 Jun 15.
Article in English | MEDLINE | ID: mdl-10882363

ABSTRACT

Indeno¿1,2-bpyrazin-2,3-diones have been identified as a novel series of potent ligands on the glycine site of the NMDA receptor. To improve their in vivo activities, an acetic acid-type side chain was introduced to the 5-position, giving water-soluble compounds when formulated as the sodium salt (>10 mg/mL). Introduction of a chlorine atom in the 8-position led to a dramatic improvement of anticonvulsant activity and this was surprising since this change did not improve binding affinity. A plausible explanation is a reduced recognition by a Na(+),K(+)-ATPase active transport system responsible for the excretion of these compounds from the brain and kidney. This promising new chemical series led to the optically active isomer (-)-10i (RPR 118723), a glycine/NMDA antagonist with nanomolar binding affinity and in vivo activity in animal model of convulsions and electrophysiology at doses in the range of 2-3 mg/kg following iv administration.


Subject(s)
Excitatory Amino Acid Antagonists/chemical synthesis , Pyrazines/chemical synthesis , Receptors, Glycine/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Anticonvulsants/pharmacology , Cells, Cultured , Cerebellum/cytology , Cerebral Cortex/metabolism , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/metabolism , Excitatory Amino Acid Antagonists/pharmacology , In Vitro Techniques , Long-Term Potentiation/drug effects , Mice , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Pyrazines/chemistry , Pyrazines/metabolism , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Glycine/metabolism , Receptors, Glycine/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Stereoisomerism
19.
Bioorg Med Chem Lett ; 10(10): 1133-7, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10843235

ABSTRACT

A novel series of 2-substituted-4,5-dihydro-4-oxo-4H-imidazo[1,2-a]indeno[1,2-e]pyrazine derivatives was synthesised. One of them, 4e-a highly water soluble compound exhibited a nanomolar affinity and demonstrated competitive antagonist properties at the ionotropic AMPA receptors. This compound also displayed potent anticonvulsant properties against electrically or sound-induced convulsions in mice after systemic administration, thus suggesting adequate brain penetration.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Anticonvulsants/metabolism , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Mice , Mice, Inbred DBA , Pyrazines/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism , Quinoxalines/pharmacology , Rats , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/metabolism , Tetrazoles/pharmacology , Urea/chemistry , Urea/metabolism , Urea/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
20.
Microb Drug Resist ; 6(1): 37-47, 2000.
Article in English | MEDLINE | ID: mdl-10868806

ABSTRACT

The semisynthetic streptogramin combination quinupristin/dalfopristin (Synercid) is a promising alternative for treatment of infections due to multiply resistant gram-positive bacteria including vancomycin-resistant Enterococcus faecium. Resistance is mediated by acetyltransferases SatA (VatD) or SatG (VatE). Recent papers have indicated a possible link between the use of the streptogramin virginiamycin S/M as a feed additive in commercial animal husbandry and a selection of quinupristin/dalfopristin-resistant E. faecium (QDRE). We screened manure samples from two different turkey farms and from six different pig farms (using virginiamycin), samples from a sewage water treatment plant, 24 broiler carcasses, 10 pork samples, and 200 stool samples of nonhospitalized humans for QDRE. Our strain culture collection of hospital E. faecium isolates from the last 2 years was also reviewed for QDRE. All manure and sewage samples were positive for QDRE, as well as 11 from broiler carcasses (46%), 1 from pork (10%), and 28 from human stool specimens (14%). Thirty-six hospital isolates of E. faecium exhibited resistance to quinupristin/dalfopristin. In 141 QDRE of different origin satA (vatD) and satG (vatE) genes were detected (seven isolates from humans with an unknown resistance mechanism). Streptogramin resistance determinants were tansferable in filtermating experiments for 5 of 10 satA (vatD) and 9 of 22 satG (vatE) isolates. Different EcoRI patterns of satG (vatE) plasmids and corresponding hybridizations of the satG (vatE) gene indicated nonhomologous resistance plasmids in isolates of different origin. The results of this study indicate a common gene pool for streptogramin resistance in E. faecium of different ecological origin. A selection of QDRE using the streptogramin virginiamycin S/M as a feed additive and a spread of the resistance via the food chain to humans is probable.


Subject(s)
Acetyltransferases/genetics , Bacterial Proteins , Enterococcus/drug effects , Virginiamycin/analogs & derivatives , Animals , Base Sequence , Conjugation, Genetic , DNA Primers , Drug Resistance, Microbial/genetics , Enterococcus/genetics , Enterococcus/isolation & purification , Feces/microbiology , Genotype , Germany , Humans , Microbial Sensitivity Tests , Poultry/microbiology , Virginiamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...