Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38666571

ABSTRACT

We present extensive new ab initio path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem-an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix-we employ the recently proposed [Y. Xiong and H. Xiong, J. Chem. Phys. 157, 094112 (2022); T. Dornheim et al., J. Chem. Phys. 159, 164113 (2023)] ξ-extrapolation method and find excellent agreement with the exact direct PIMC reference data where available. This opens up the intriguing possibility of studying a gamut of properties of light elements and potentially material mixtures over a substantial part of the warm dense matter regime, with direct relevance for astrophysics, material science, and inertial confinement fusion research.

2.
J Chem Theory Comput ; 20(1): 68-78, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38133546

ABSTRACT

Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange-correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.

3.
Phys Rev E ; 108(3-2): 035204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849144

ABSTRACT

The properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the understanding of astrophysical objects and technological applications such as inertial confinement fusion. In this work, we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the electronic localization around the protons with their density response to an external harmonic perturbation. We find qualitative agreement between our simulation data and a heuristic model based on the assumption of a local uniform electron gas model, but important trends are not captured by this simplification. In addition to being interesting in their own right, we are convinced that our results will be of high value for future projects, such as the rigorous benchmarking of approximate theories for the simulation of WDM, most notably density functional theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...