Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35326163

ABSTRACT

Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.

2.
J Cancer Res Clin Oncol ; 148(8): 1983-1990, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35348887

ABSTRACT

PURPOSE: Oxidative stress has been linked to initiation and progression of cancer and recent studies have indicated a potential translational role regarding modulation of ROS in various cancers, including acute myeloid leukemia (AML). Detailed understanding of the complex machinery regulating ROS including its producer elements in cancer is required to define potential translational therapeutic use. Based on previous studies in acute myeloid leukemia (AML) models, we considered NADPH oxidase (NOX) family members, specifically NOX4 as a potential target in AML. METHODS: Pharmacologic inhibition and genetic inactivation of NOX4 in murine and human models of AML were used to understand its functional role. For genetic inactivation, CRISPR-Cas9 technology was used in human AML cell lines in vitro and genetically engineered knockout mice for Nox4 were used for deletion of Nox4 in hematopoietic cells via Mx1-Cre recombinase activation. RESULTS: Pharmacologic NOX inhibitors and CRISPR-Cas9-mediated inactivation of NOX4 and p22-phox (an essential NOX component) decreased proliferative capacity and cell competition in FLT3-ITD-positive human AML cells. In contrast, conditional deletion of Nox4 enhanced the myeloproliferative phenotype of an FLT3-ITD induced knock-in mouse model. Finally, Nox4 inactivation in normal hematopoietic stem and progenitor cells (HSPCs) caused a minor reduction in HSC numbers and reconstitution capacity. CONCLUSION: The role of NOX4 in myeloid malignancies appears highly context-dependent and its inactivation results in either enhancing or inhibitory effects. Therefore, targeting NOX4 in FLT3-ITD positive myeloid malignancies requires additional pre-clinical assessment.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , NADPH Oxidase 4 , Animals , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Knockout , Mutation , Myeloproliferative Disorders/genetics , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , fms-Like Tyrosine Kinase 3/genetics
3.
PLoS One ; 15(12): e0240498, 2020.
Article in English | MEDLINE | ID: mdl-33296397

ABSTRACT

The signal peptides, present at the N-terminus of many proteins, guide the proteins into cell membranes. In some proteins, the signal peptide is with an extended N-terminal region. Previously, it was demonstrated that the N-terminally extended signal peptide of the human PTPRJ contains a cluster of arginine residues, which attenuates translation. The analysis of the mammalian orthologous sequences revealed that this sequence is highly conserved. The PTPRJ transcripts in placentals, marsupials, and monotremes encode a stretch of 10-14 arginine residues, positioned 11-12 codons downstream of the initiating AUG. The remarkable conservation of the repeated arginine residues in the PTPRJ signal peptides points to their key role. Further, the presence of an arginine cluster in the extended signal peptides of other proteins (E3 ubiquitin-protein ligase, NOTCH3) is noted and indicates a more general importance of this cis-acting mechanism of translational suppression.


Subject(s)
Conserved Sequence/genetics , Protein Biosynthesis/genetics , Protein Sorting Signals/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Animals , Arginine/genetics , Codon, Initiator/genetics , Humans , RNA, Messenger/genetics , Receptor, Notch3/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment
4.
Trends Mol Med ; 26(9): 833-847, 2020 09.
Article in English | MEDLINE | ID: mdl-32593582

ABSTRACT

Activating mutations in genes encoding receptor tyrosine kinases (RTKs) mediate proliferation, cell migration, and cell survival, and are therefore important drivers of oncogenesis. Numerous targeted cancer therapies are directed against activated RTKs, including small compound inhibitors, and immunotherapies. It has recently been discovered that not only certain RTK fusion proteins, but also many full-length RTKs harbouring activating mutations, notably RTKs of the class III family, are to a large extent mislocalised in intracellular membranes. Active kinases in these locations cause aberrant activation of signalling pathways. Moreover, low levels of activated RTKs at the cell surface present an obstacle for immunotherapy. We outline here why understanding of the mechanisms underlying mislocalisation will help in improving existing and developing novel therapeutic strategies.


Subject(s)
Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/genetics , Animals , Cell Membrane/genetics , Humans , Mutation/genetics , Signal Transduction/genetics
5.
Eur J Med Chem ; 193: 112232, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32199135

ABSTRACT

Mutants of the FLT3 receptor tyrosine kinase (RTK) with duplications in the juxtamembrane domain (FLT3-ITD) act as drivers of acute myeloid leukemia (AML). Potent tyrosine kinase inhibitors (TKi) of FLT3-ITD entered clinical trials and showed a promising, but transient success due to the occurrence of secondary drug-resistant AML clones. A further caveat of drugs targeting FLT3-ITD is the co-targeting of other RTKs which are required for normal hematopoiesis. This is observed quite frequently. Therefore, novel drugs are necessary to treat AML effectively and safely. Recently bis(1H-indol-2-yl)methanones were found to inhibit FLT3 and PDGFR kinases. In order to optimize these agents we synthesized novel derivatives of these methanones with various substituents. Methanone 16 and its carbamate derivative 17b inhibit FLT3-ITD at least as potently as the TKi AC220 (quizartinib). Models indicate corresponding interactions of 16 and quizartinib with FLT3. The activity of 16 is accompanied by a high selectivity for FLT3-ITD.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3/metabolism
6.
J Cell Mol Med ; 24(8): 4668-4676, 2020 04.
Article in English | MEDLINE | ID: mdl-32155324

ABSTRACT

Class III receptor tyrosine kinases control the development of hematopoietic stem cells. Constitutive activation of FLT3 by internal tandem duplications (ITD) in the juxtamembrane domain has been causally linked to acute myeloid leukaemia. Oncogenic FLT3 ITD is partially retained in compartments of the biosynthetic route and aberrantly activates STAT5, thereby promoting cellular transformation. The pool of FLT3 ITD molecules in the plasma membrane efficiently activates RAS and AKT, which is likewise essential for cell transformation. Little is known about features and mechanisms of FLT3 ligand (FL)-dependent internalization of surface-bound FLT3 or FLT3 ITD. We have addressed this issue by internalization experiments using human RS4-11 and MV4-11 cells with endogenous wild-type FLT3 or FLT3 ITD expression, respectively, and surface biotinylation. Further, FLT3 wild-type, or FLT3 ITD-GFP hybrid proteins were stably expressed and characterized in 32D cells, and internalization and stability were assessed by flow cytometry, imaging flow cytometry, and immunoblotting. FL-stimulated surface-exposed FLT3 WT or FLT3 ITD protein showed similar endocytosis and degradation characteristics. Kinase inactivation by mutation or FLT3 inhibitor treatment strongly promoted FLT3 ITD surface localization, and attenuated but did not abrogate FL-induced internalization. Experiments with the dynamin inhibitor dynasore suggest that active FLT3 as well as FLT3 ITD is largely endocytosed via clathrin-dependent endocytosis. Internalization of kinase-inactivated molecules occurred through a different yet unidentified mechanism. Our data demonstrate that FLT3 WT and constitutively active FLT3 ITD receptor follow, despite very different biogenesis kinetics, similar internalization and degradation routes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Leukemia, Myeloid, Acute/genetics , Membrane Proteins/genetics , STAT5 Transcription Factor/genetics , fms-Like Tyrosine Kinase 3/genetics , Carcinogenesis , Gene Duplication/genetics , Gene Expression Regulation, Neoplastic/genetics , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/pathology , Ligands , Mutation , Tandem Repeat Sequences/genetics
8.
Redox Biol ; 28: 101325, 2020 01.
Article in English | MEDLINE | ID: mdl-31606550

ABSTRACT

Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.


Subject(s)
Cyclohexanones/pharmacology , Cysteine/metabolism , Mutation , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism , Cell Line , Cytoplasm/metabolism , HEK293 Cells , Humans , Models, Molecular , Oxidation-Reduction , Protein Conformation , Reactive Oxygen Species/metabolism , Signal Transduction , fms-Like Tyrosine Kinase 3/genetics
9.
J Neurol Sci ; 408: 116553, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31715329

ABSTRACT

INTRODUCTION: Meningiomas are common tumors in adults, which develop from the meningeal coverings of the brain and spinal cord. Loss-of-function mutations or deletion of the NF2 gene, resulting in loss of the encoded Merlin protein, lead to Neurofibromatosis type 2 (NF2), but also cause the formation of sporadic meningiomas. It was shown that inactivation of Nf2 in mice caused meningioma formation. Another meningioma tumor-suppressor candidate is the receptor-like density-enhanced phosphatase-1 (DEP-1), encoded by PTPRJ. Loss of DEP-1 enhances meningioma cell motility in vitro and invasive growth in an orthotopic xenograft model. Ptprj-deficient mice develop normally and do not show spontaneous tumorigenesis. Another genetic lesion may be required to interact with DEP-1 loss in meningioma genesis. METHODS: In the present study we investigated in vitro and in vivo whether the losses of DEP-1 and Merlin/NF2 may have a combined effect. RESULTS: Human meningioma cells deficient for DEP-1, Merlin/NF2 or both showed no statistically significant changes in cell proliferation, while DEP-1 or DEP1/NF2 deficiency led to moderately increased colony size in clonogenicity assays. In addition, the loss of any of the two genes was sufficient to induce a significant reduction of cell size (p < .05) and profound morphological changes. Most important, in Ptprj knockout mice Cre/lox mediated meningeal Nf2 knockout elicited a four-fold increased rate of meningioma formation within one year compared with mice with Ptprj wild type alleles (25% vs 6% tumor incidence). CONCLUSIONS: Our data suggest that loss of DEP-1 and Merlin/NF2 synergize during meningioma genesis.


Subject(s)
Meningeal Neoplasms/metabolism , Meningioma/metabolism , Neurofibromin 2/deficiency , Animals , Animals, Newborn , Cell Line, Tumor , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/pathology , Mice , Mice, Transgenic , Neurofibromin 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
10.
Oncogene ; 38(24): 4773-4787, 2019 06.
Article in English | MEDLINE | ID: mdl-30820040

ABSTRACT

The receptor tyrosine kinase FLT3 is expressed in myeloid and lymphoid progenitor cells. Activating mutations in FLT3 occur in 25-30% of acute myeloid leukaemia (AML) patients. Most common are internal tandem duplications of sequence (ITD) leading to constitutive FLT3-ITD kinase activity with an altered signalling quality promoting leukaemic cell transformation. Here, we observed the attenuating role of the receptor-like protein tyrosine phosphatase (RPTP) CD45/Ptprc in FLT3 signalling in vivo. Low level expression of this abundant RPTP correlates with a poor prognosis of FLT3-ITD-positive AML patients. To get a further insight into the regulatory role of Ptprc in FLT3-ITD activity in vivo, Ptprc knock-out mice were bred with FLT3-ITD knock-in mice. Inactivation of the Ptprc gene in FLT3-ITD mice resulted in a drastically shortened life span and development of severe monocytosis, a block in B-cell development and anaemia. The myeloproliferative phenotype was associated with extramedullary haematopoiesis, splenohepatomegaly and severe alterations of organ structures. The phenotypic alterations were associated with increased transforming signalling of FLT3-ITD, including activation of its downstream target STAT5. These data reveal the capacity of Ptprc for the regulation of FLT3-ITD signalling activity in vivo. In addition, histopathology and computed tomography (CT) revealed an unexpected bone phenotype; the FLT3-ITD Ptprc-/- mice, but none of the controls, showed pronounced alterations in bone morphology and, in part, apparent features of osteoporosis. In the spleen, ectopic bone formation was observed. The observed bone phenotypes suggest a previously unappreciated capacity of FLT3-ITD (and presumably FLT3) to regulate bone development/remodelling, which is under negative control of CD45/Ptprc.


Subject(s)
Bone and Bones , Leukocyte Common Antigens/genetics , Myeloproliferative Disorders/genetics , Osteoporosis/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Bone Development/genetics , Bone Remodeling/genetics , Cell Transformation, Neoplastic , Cells, Cultured , Choristoma/genetics , Choristoma/metabolism , Embryo, Mammalian , Female , Humans , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukocyte Common Antigens/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/pathology , Osteogenesis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Phenotype , Porosity , Tandem Repeat Sequences/genetics
11.
Sci Rep ; 8(1): 14684, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279491

ABSTRACT

Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.


Subject(s)
Hyperglycemia/pathology , Monocytes/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyruvaldehyde/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , src-Family Kinases/metabolism , Animals , Chemotaxis , Humans , Mice , Monocytes/drug effects
13.
Oncotarget ; 9(10): 9442-9455, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29507701

ABSTRACT

The introduction of second-generation tyrosine kinase inhibitors (TKIs) targeting the protein-tyrosine kinase (PTK) BCR-ABL1 has improved treatment response in chronic myeloid leukemia (CML). However, in some patients response still remains suboptimal. Protein-tyrosine phosphatases (PTPs) are natural counter-actors of PTK activity and can affect TKI sensitivity, but the impact of PTPs on treatment response to second-generation TKIs is unknown. We assessed the mRNA expression level of 38 PTPs in 66 newly diagnosed CML patients and analyzed the potential relation with treatment outcome after 9 months of nilotinib medication. A significantly positive association with response was observed for higher PTPN13, PTPRA, PTPRC (also known as CD45), PTPRG, and PTPRM expression. Selected PTPs were then subjected to a functional analysis in CML cell line models using PTP gene knockout by CRISPR/Cas9 technology or PTP overexpression. These analyses revealed PTPRG positively and PTPRC negatively modulating nilotinib response. Consistently, PTPRG negatively and PTPRC positively affected BCR-ABL1 dependent transformation. We identified BCR-ABL1 signaling events, which were affected by modulating PTP levels or nilotinib treatment in the same direction. In conclusion, the PTP status of CML cells is important for the response to second generation TKIs and may help in optimizing therapeutic strategies.

14.
Oncotarget ; 8(62): 105440-105457, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29285262

ABSTRACT

Internal tandem duplication of the juxtamembrane domain of FMS-like tyrosine kinase 3 (FLT3-ITD) is the most prevalent genetic aberration present in 20-30% of acute myeloid leukaemia (AML) cases and is associated with a poor prognosis. FLT3-ITD expressing cells express elevated levels of NADPH oxidase 4 (NOX4)-generated pro-survival hydrogen peroxide (H2O2) contributing to increased levels of DNA oxidation and double strand breaks. NOX4 is constitutively active and has been found to have various isoforms expressed at multiple locations within a cell. The purpose of this study was to investigate the expression, localisation and regulation of NOX4 28 kDa splice variant, NOX4D. NOX4D has previously been shown to localise to the nucleus and nucleolus in various cell types and is implicated in the generation of reactive oxygen species (ROS) and DNA damage. Here, we demonstrate that FLT3-ITD expressing-AML patient samples as well as -cell lines express the NOX4D isoform resulting in elevated H2O2 levels compared to FLT3-WT expressing cells, as quantified by flow cytometry. Cell fractionation indicated that NOX4D is nuclear membrane-localised in FLT3-ITD expressing cells. Treatment of MV4-11 cells with receptor trafficking inhibitors, tunicamycin and brefeldin A, resulted in deglycosylation of NOX4 and NOX4D. Inhibition of the FLT3 receptor revealed that the FLT3-ITD oncogene is responsible for the production of NOX4D-generated H2O2 in AML. We found that inhibition of the PI3K/AKT and STAT5 pathways resulted in down-regulation of NOX4D-generated pro-survival ROS. Taken together these findings indicate that nuclear membrane-localised NOX4D-generated pro-survival H2O2 may be contributing to genetic instability in FLT3-ITD expressing AML.

15.
Oncotarget ; 8(16): 26613-26624, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28460451

ABSTRACT

Fms-like tyrosine kinase 3 (FLT3) with internal tandem duplications (ITD) is a major oncoprotein in acute myeloid leukemia (AML), and confers an unfavorable prognosis. Interference with FLT3ITD signaling is therefore pursued as a promising therapeutic strategy. In this study we show that abrogation of FLT3ITD glycoprotein maturation using low doses of the N-glycosylation inhibitor tunicamycin has anti-proliferative and pro-apoptotic effects on FLT3ITD-expressing human and murine cell lines. This effect is mediated in part by arresting FLT3ITD in an underglycosylated state and thereby attenuating FLT3ITD-driven AKT and ERK signaling. In addition, tunicamycin caused pronounced endoplasmatic reticulum stress and apoptosis through activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activation of the gene encoding CCAAT-enhancer-binding protein homologous protein (CHOP). PERK inhibition with a small molecule attenuated CHOP induction and partially rescued cells from apoptosis. Combination of tunicamycin with potent FLT3ITD kinase inhibitors caused synergistic cell killing, which was highly selective for cell lines and primary AML cells expressing FLT3ITD. Although tunicamycin is currently not a clinically applicable drug, we propose that mild inhibition of N-glycosylation may have therapeutic potential in combination with FLT3 kinase inhibitors for FLT3ITD-positive AML.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Duplication , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Tandem Repeat Sequences , fms-Like Tyrosine Kinase 3/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Drug Synergism , Endoplasmic Reticulum Stress , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Glycosylation/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-akt/metabolism , Tumor Cells, Cultured , Tunicamycin/pharmacology , fms-Like Tyrosine Kinase 3/metabolism
16.
Glia ; 65(2): 416-428, 2017 02.
Article in English | MEDLINE | ID: mdl-27859601

ABSTRACT

Microglia cells are brain macrophages whose proper functioning is essential for maintenance and repair processes of the central nervous system (CNS). Migration and phagocytosis are critical aspects of microglial activity. By using genetically modified cell lines and knockout mice we demonstrate here that the receptor protein-tyrosine phosphatase (PTP) DEP-1 (also known as PTPRJ or CD148) acts as a positive regulator of both processes in vitro and in vivo. Notably, reduced microglial migration was detectable in brains of Ptprj-/- mice using a wounding assay. Mechanistically, density-enhanced phosphatase-1 (DEP-1) may in part function by inhibiting the activity of the Src family kinase Fyn. In the microglial cell line BV2 DEP-1 depletion by shRNA-mediated knockdown resulted in enhanced phosphorylation of the Fyn activating tyrosine (Tyr420 ) and elevated specific Fyn-kinase activity in immunoprecipitates. Moreover, Fyn mRNA and protein levels were reduced in DEP-1 deficient microglia cells. Consistent with a negative regulatory role of Fyn for microglial functions, which is inhibited by DEP-1, microglial cells from Fyn-/- mice exhibited elevated migration and phagocytosis. Enhanced microglia migration to a site of injury was also observed in Fyn-/- mice in vivo. Taken together our data revealed a previously unrecognized role of DEP-1 and suggest the existence of a potential DEP-1-Fyn axis in the regulation of microglial functions. GLIA 2017;65:416-428.


Subject(s)
Cell Movement/physiology , Gene Expression Regulation/genetics , Microglia/physiology , Phagocytosis/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Animals , Animals, Newborn , Cell Line, Transformed , Cell Movement/genetics , Cells, Cultured , Cerebral Cortex/cytology , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/physiology , Proto-Oncogene Proteins c-fyn/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
17.
Exp Hematol ; 44(12): 1113-1122, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27666490

ABSTRACT

In different types of myeloid leukemia, increased formation of reactive oxygen species (ROS) has been noted and associated with aspects of cell transformation, including the promotion of leukemic cell proliferation and migration, as well as DNA damage and accumulation of mutations. Work reviewed in this article has revealed the involvement of NADPH oxidase (NOX)-derived ROS downstream of oncogenic protein-tyrosine kinases in both processes, and the related pathways have been partially identified. FMS-like tyrosine kinase 3 with internal tandem duplications (FLT3-ITD), an important oncoprotein in a subset of acute myeloid leukemias, causes activation of AKT and, subsequently, stabilization of p22phox, a regulatory subunit for NOX1-4. This process is linked to ROS formation and DNA damage. Moreover, FLT3-ITD signaling through STAT5 enhances expression of NOX4, ROS formation, and inactivation of the protein-tyrosine phosphatase DEP-1/PTPRJ, a negative regulator of FLT3 signaling, by reversible oxidation of its catalytic cysteine residue. Genetic inactivation of NOX4 restores DEP-1 activity and attenuates cell transformation by FLT3-ITD in vitro and in vivo. Future work is required to further explore these mechanisms and their causal involvement in leukemic cell transformation, which may result in the identification of novel candidate targets for therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Tandem Repeat Sequences , fms-Like Tyrosine Kinase 3/genetics , Animals , DNA Damage , Humans , Leukemia, Myeloid, Acute/pathology , Oxidation-Reduction , Protein Tyrosine Phosphatases/metabolism , Signal Transduction
18.
Methods Mol Biol ; 1447: 217-42, 2016.
Article in English | MEDLINE | ID: mdl-27514809

ABSTRACT

Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.


Subject(s)
Protein Interaction Mapping/methods , Protein Tyrosine Phosphatases/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Optical Imaging/methods , Protein Interaction Maps , Receptor, TIE-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , fms-Like Tyrosine Kinase 3/metabolism
19.
Mol Plant ; 8(8): 1253-73, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25882345

ABSTRACT

Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Acetylcysteine/pharmacology , Alternaria/physiology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Base Sequence , Cell Death/drug effects , Ditiocarb/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Light , Molecular Sequence Data , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/radiation effects , Plant Shoots/drug effects , Plant Shoots/radiation effects , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Seedlings/drug effects , Seedlings/genetics , Seedlings/microbiology , Seedlings/radiation effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Stress, Physiological/radiation effects , Transcription Factors/genetics
20.
Mol Metab ; 4(4): 325-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25830095

ABSTRACT

OBJECTIVE: Insulin resistance can be triggered by enhanced dephosphorylation of the insulin receptor or downstream components in the insulin signaling cascade through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced phosphatase-1 (DEP-1) resulted in an improved metabolic status in previous analyses. This phenotype was primarily caused by hepatic DEP-1 reduction. METHODS: Here we further elucidated the role of DEP-1 in glucose homeostasis by employing a conventional knockout model to explore the specific contribution of DEP-1 in metabolic tissues. Ptprj (-/-) (DEP-1 deficient) and wild-type C57BL/6 mice were fed a low-fat or high-fat diet. Metabolic phenotyping was combined with analyses of phosphorylation patterns of insulin signaling components. Additionally, experiments with skeletal muscle cells and muscle tissue were performed to assess the role of DEP-1 for glucose uptake. RESULTS: High-fat diet fed-Ptprj (-/-) mice displayed enhanced insulin sensitivity and improved glucose tolerance. Furthermore, leptin levels and blood pressure were reduced in Ptprj (-/-) mice. DEP-1 deficiency resulted in increased phosphorylation of components of the insulin signaling cascade in liver, skeletal muscle and adipose tissue after insulin challenge. The beneficial effect on glucose homeostasis in vivo was corroborated by increased glucose uptake in skeletal muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj (-/-) mice. CONCLUSION: Together, these data establish DEP-1 as novel negative regulator of insulin signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...