Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
EJNMMI Radiopharm Chem ; 7(1): 3, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35239034

ABSTRACT

BACKGROUND: Pretargeted immuno-PET tumor imaging has emerged as a valuable diagnostic strategy that combines the high specificity of antibody-antigen interaction with the high signal and image resolution offered by short-lived PET isotopes, while reducing the irradiation dose caused by traditional 89Zr-labelled antibodies. In this work, we demonstrate proof of concept of a novel 'two-step' immuno-PET pretargeting approach, based on bispecific antibodies (bsAbs) engineered to feature dual high-affinity binding activity for a fluorescein-based 18F-PET tracer and tumor markers. RESULTS: A copper(I)-catalysed click reaction-based radiolabeling protocol was developed for the synthesis of fluorescein-derived molecule [18F]TPF. Binding of [18F]TPF on FITC-bearing bsAbs was confirmed. An in vitro autoradiography assay demonstrated that [18F]TPF could be used for selective imaging of EpCAM-expressing OVCAR3 cells, when pretargeted with EpCAMxFITC bsAb. The versatility of the pretargeting approach was showcased in vitro using a series of fluorescein-binding bsAbs directed at various established cancer-associated targets, including the pan-carcinoma cell surface marker EpCAM, EGFR, melanoma marker MCSP (aka CSPG4), and immune checkpoint PD-L1, offering a range of potential future applications for this pretargeting platform. CONCLUSION: A versatile pretargeting platform for PET imaging, which combines bispecific antibodies and a fluorescein-based 18F-tracer, is presented. It is shown to selectively target EpCAM-expressing cells in vitro and its further evaluation with different bispecific antibodies demonstrates the versatility of the approach.

4.
Trends Mol Med ; 27(4): 379-393, 2021 04.
Article in English | MEDLINE | ID: mdl-33436332

ABSTRACT

The rapidly developing field of molecular medical imaging focuses on specific visualization of (patho)physiological processes through the application of imaging agents (IAs) in multiple clinical modalities. Although our understanding of the principles underlying efficient IAs design has increased tremendously, many IAs still show poor in vivo imaging performance because of low binding affinity and/or specificity. These limitations can be addressed by taking advantage of multivalency, in which multiple copies of a ligand are employed to strengthen the interaction. We critically address specific challenges associated with the application of multivalent compounds in molecular imaging, and we give directions for a stepwise approach to the design of multivalent imaging probes to improve their target binding and pharmacokinetics (PK) for improved diagnostic potential.


Subject(s)
Molecular Imaging , Antibody Affinity , Binding Sites , Fluorescent Dyes , Molecular Imaging/methods , Molecular Imaging/trends
5.
Chemistry ; 26(47): 10871-10881, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32315486

ABSTRACT

Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide-alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide-alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting 'F-PSMA-MIC' radiotracers (t1/2 =109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68 Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Radioactive Tracers , Humans , Male
6.
J Control Release ; 244(Pt B): 375-383, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27476610

ABSTRACT

Single-chain technology (SCT) allows the manipulation of polymeric architectures at an individual polymer chain level, providing a new platform for the fabrication of nanoscale polymeric objects. However, it remains problematic to apply this newborn technology to the biological and medical fields, since synthesis of single-chain polymeric nanoparticles relies heavily on controlled/living radical polymerization of vinyl based monomers, yielding a persistent non-degradable carbon-carbon based backbone. Moreover, the ultrahigh dilution conditions often required for single-chain polymer nanoparticle synthesis limits large-scale applicability. A versatile approach to achieve backbone degradability in single-chain cyclized polymers was developed by combining ring-opening addition polymerization and intramolecular cyclization into a one-pot RAFT copolymerization of cyclic and mono/multi-vinyl monomers system under concentrated conditions. The in situ intramolecular cyclization of individual propagating chains was achieved by kinetic control and statistical manipulation of mono- and multi-vinyl monomer copolymerization. The cyclic allylsulfide monomer 3-methylidene-1,9-dioxa-5,12,13-trithiacyclopentadecane-2,8-dione (MDTD) was copolymerized via the ring-opening pathway to introduce disulfide groups into the vinyl-based backbone without compromising the single chain propagation nature. Backbone degradable single chain polymeric nanoparticles were obtained with molecular weights of 10kDa and MDTD incorporation ratios of 4.7%. Chemical degradation of the nanoparticles confirmed both their single chain nature, as well as backbone degradability. The single-chain cyclized polymeric nanoparticles were evaluated for their gene transfection capabilities. The backbone degradable nanoparticles displayed high transfection efficiencies and low cytotoxicities in both 3T3 and HeLa cells.


Subject(s)
DNA/administration & dosage , Gene Transfer Techniques , Nanoparticles/administration & dosage , Polymers/administration & dosage , 3T3 Cells , Animals , DNA/chemistry , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Mice , Nanoparticles/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...