Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 119: 349-359, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33186784

ABSTRACT

Mantle cell lymphoma (MCL) is a rare subtype of B-cell non-Hodgkin lymphoma (B-NHL) with chronically relapsing clinical course. Implementation of cytarabine (araC) into induction and salvage regimen became standard of care for majority of MCL patients. In this study, tailored N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer nanotherapeutics containing covalently bound araC (araC co-polymers) were designed, synthesized and evaluated for their anti-lymphoma efficacy in vivo using a panel of six patient-derived lymphoma xenografts (PDX) derived from newly diagnosed and relapsed / refractory (R/R) MCL. While free araC led to temporary inhibition of growth of MCL tumors, araC co-polymers induced long-term disappearance of the engrafted lymphomas with no observed toxicity even in the case of PDX models derived from patients, who relapsed after high-dose araC-based treatments. The results provide sound preclinical rationale for the use of HPMA-based araC co-polymers in induction, salvage or palliative therapy of MCL patients.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Antineoplastic Combined Chemotherapy Protocols , Cytarabine/pharmacology , Humans , Lymphoma, Mantle-Cell/drug therapy , Neoplasm Recurrence, Local , Rituximab/therapeutic use , Treatment Outcome
2.
Pharmaceutics ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936737

ABSTRACT

Cell-penetrating peptides (CPPs) are commonly used substances enhancing the cellular uptake of various cargoes that do not easily cross the cellular membrane. CPPs can be either covalently bound directly to the cargo or they can be attached to a transporting system such as a polymer carrier together with the cargo. In this work, several CPP-polymer conjugates based on copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) with HIV-1 Tat peptide (TAT), a minimal sequence of penetratin (PEN), IRS-tag (RYIRS), and PTD4 peptide, and the two short hydrophobic peptides VPMLK and PFVYLI were prepared and characterized. Moreover, the biological efficacy of fluorescently labeled polymer carriers decorated with various CPPs was compared. The experiments revealed that the TAT-polymer conjugate and the PEN-polymer conjugate were internalized about 40 times and 15 times more efficiently than the control polymer, respectively. Incorporation of dodeca(ethylene glycol) spacer improved the cell penetration of both studied polymer-peptide conjugates compared to the corresponding spacer-free polymer conjugates, while the shorter tetra(ethylene glycol) spacer improved only the penetration of the TAT conjugate but it did not improve the penetration of the PEN conjugate. Finally, a significantly improved cytotoxic effect of the polymer conjugate containing anticancer drug pirarubicin and TAT attached via a dodeca(ethylene glycol) was observed when compared with the analogous polymer-pirarubicin conjugate without TAT.

3.
Pharmaceutics ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906300

ABSTRACT

This report describes the design, synthesis and evaluation of tumor-targeted polymer probes to visualize epidermal growth factor receptor (EGFR)-positive malignant tumors for successful resection via fluorescence guided endoscopic surgery. Fluorescent polymer probes of various molecular weights enabling passive accumulation in tumors via enhanced permeability and retention were prepared and evaluated, showing an optimal molecular weight of 200,000 g/mol for passive tumor targeting. Moreover, poly(N-(2-hydroxypropyl)methacrylamide)-based copolymers labeled with fluorescent dyes were targeted with the EGFR-binding oligopeptide GE-11 (YHWYGYTPQNVI), human EGF or anti-EGFR monoclonal antibody cetuximab were all able to actively target the surface of EGFR-positive tumor cells. Nanoprobes targeted with GE-11 and cetuximab showed the best targeting profile but differed in their tumor accumulation kinetics. Cetuximab increased tumor accumulation after 15 min, whereas GE 11 needed at least 4 h. Interestingly, after 4 h, there were no significant differences in tumor targeting, indicating the potential of oligopeptide targeting for fluorescence-navigated surgery. In conclusion, fluorescent polymer probes targeted by oligopeptide GE-11 or whole antibody are excellent tools for surgical navigation during oncological surgery of head and neck squamous cell carcinoma, due to their relatively simple design, synthesis and cost, as well as optimal pharmacokinetics and accumulation in tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...