Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 8: 557572, 2020.
Article in English | MEDLINE | ID: mdl-33072721

ABSTRACT

Microalgae-based bioenergy production is a promising field with regard to the wide variety of algal species and metabolic potential. The use of liquid wastes as nutrient clearly improves the sustainability of microalgal biofuel production. Microalgae and bacteria have an ecological inter-kingdom relationship. This microenvironment called phycosphere has a major role in the ecosystem productivity and can be utilized both in bioremediation and biomass production. However, knowledge on the effects of indigenous bacteria on microalgal growth and the characteristics of bacterial communities associated with microalgae are limited. In this study municipal, industrial and agricultural liquid waste derivatives were used as cultivation media. Chlorella vulgaris green microalgae and its bacterial partners efficiently metabolized the carbon, nitrogen and phosphorous content available in these wastes. The read-based metagenomics approach revealed a diverse microbial composition at the start point of cultivations in the different types of liquid wastes. The relative abundance of the observed taxa significantly changed over the cultivation period. The genome-centric reconstruction of phycospheric bacteria further explained the observed correlations between the taxonomic composition and biomass yield of the various waste-based biodegradation systems. Functional profile investigation of the reconstructed microbes revealed a variety of relevant biological processes like organic acid oxidation and vitamin B synthesis. Thus, liquid wastes were shown to serve as valuable resources of nutrients as well as of growth promoting bacteria enabling increased microalgal biomass production.

2.
Anaerobe ; 52: 1-8, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29803739

ABSTRACT

Most photosynthetic organisms store and convert solar energy in an aerobic process and produce biomass for various uses. Utilization of biomass for the production of renewable energy carriers employs anaerobic conditions. This review focuses on microalgal biomass and its use for biological hydrogen and methane production. Microalgae offer several advantages compared to terrestrial plants. Strategies to maintain anaerobic environment for biohydrogen production are summarized. Efficient biogas production via anaerobic digestion is significantly affected by the biomass composition, pretreatment strategies and the parameters of the digestion process. Coupled biohydrogen and biogas production increases the efficiency and sustainability of renewable energy production.


Subject(s)
Biofuels/analysis , Hydrogen/metabolism , Methane/biosynthesis , Microalgae/metabolism , Anaerobiosis , Biomass , Microalgae/growth & development
3.
Anaerobe ; 46: 13-22, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28341558

ABSTRACT

Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes. Particular emphasis is put on the biochemical conversion pathways involving methanotrophs and their methane monooxygenase-catalyzed reactions leading to various small molecules and polymeric materials such as extracellular polysaccharides, polyhydroxyalkanoates and proteins. c.) The third area covered concerns methane-consuming reactions and methane emission mitigation. These investigations comprise the anaerobic microbiology of ruminants and approaches to diminishing methane emissions from ruminant animals.


Subject(s)
Biofuels , Methane/biosynthesis , Anaerobiosis , Animals , Biochemical Phenomena , Biotransformation , Carbon Dioxide , Fermentation , Greenhouse Gases , Humans , Plants/metabolism , Renewable Energy
4.
Anaerobe ; 46: 138-145, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28351698

ABSTRACT

Water extraction of raw chicken manure elevated the carbon-to-nitrogen ratio 2.7-fold, i.e. from 7.48 to 19.81. The treated chicken manure (T-CM) thus became suitable for biogas fermentation as monosubstrate. Improved methane production was achieved in co-fermentations with either maize silage (24% more methane) or corn stover (19% more methane) relative to T-CM monosubstrate. The standardized biogas potential assay indicated that the methane yields varied with the organic loading rate between 160 and 250 mL CH4/g organic total solid (oTS). Co-fermentation with maize silage was sustainable in continuous anaerobic digestion for at least 4 months.


Subject(s)
Biofuels , Fermentation , Manure , Poultry , Zea mays , Anaerobiosis , Animals , Biodegradation, Environmental , Bioreactors , Biotransformation , Carbon , Chickens , Nitrogen
5.
J Biotechnol ; 215: 52-61, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26087313

ABSTRACT

A microalgal biomass offers a potential alternative to the maize silage commonly used in biogas technology. In this study, photoautotrophically grown Scenedesmus obliquus was used as biogas substrate. This microalga has a low C/N ratio of 8.5 relative to the optimum 20-30. A significant increase in the ammonium ion content was not observed. The methane content of the biogas generated from Sc. obliquus proved to be higher than that from maize silage, but the specific biogas yield was lower. Semi-continuous steady biogas production lasted for 2 months. Because of the thick cell wall of Sc. obliquus, the biomass-degrading microorganisms require additional time to digest its biomass. The methane concentration in the biogas was also high, in co-digestion (i.e., 52-56%) as in alga-fed anaerobic digestion (i.e., 55-62%). These results may be related to the relative predominance of the order Clostridiales in co-digestion and to the more balanced C/N ratio of the mixed algal-maize biomass. Predominance of the order Methanosarcinales was observed in the domain Archaea, which supported the diversity of metabolic pathways in the process.


Subject(s)
Biofuels , Fermentation , Metagenome , Scenedesmus/metabolism , Ammonium Compounds/metabolism , Archaea/metabolism , Biomass , Bioreactors , Methane/metabolism , Methanosarcinales/metabolism , Microalgae/metabolism , Scenedesmus/growth & development , Silage , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL