Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 846989, 2022.
Article in English | MEDLINE | ID: mdl-35620696

ABSTRACT

Viruses of the genus Badnavirus (family Caulimoviridae) are double-stranded DNA-reverse transcribing (dsDNA-RT) plant viruses and have emerged as serious pathogens of tropical and temperate crops globally. Endogenous badnaviral sequences are found integrated in the genomes of several economically important plant species. Infection due to activation of replication-competent integrated copies of the genera Badnavirus, Petuvirus and Cavemovirus has been described. Such endogenous badnaviral elements pose challenges to the development of nucleic acid-based diagnostic methods for episomal virus infections and decisions on health certification for international movement of germplasm and seed. One major food security crop affected is yam (Dioscorea spp.). A diverse range of Dioscorea bacilliform viruses (DBVs), and endogenous DBV (eDBV) sequences have been found to be widespread in yams cultivated in West Africa and other parts of the world. This study outlines the development of multiplex PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE) to assist in the detection and analysis of eDBVs, through the example of analysing yam germplasm from Nigeria and Ghana. Primers targeting the three most prevalent DBV monophyletic species groups in West Africa were designed to improve DGGE resolution of complex eDBV sequence fingerprints. Multiplex PCR-DGGE with the addition of a tailor-made DGGE sequence marker enables rapid comparison of endogenous badnaviral sequence diversity across germplasm, as illustrated in this study for eDBV diversity in yam.

2.
Bio Protoc ; 11(1): e3880, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33732768

ABSTRACT

Cell suspension cultures have been studied for decades to produce natural molecules. However, the difficulty in generating stably transformed cell lines has limited their use to produce high value chemicals reproducibly and in elevated quantities. In this protocol, a method to stably transform and maintain Arabidopsis cell suspension cultures is devised and presented in detail. Arabidopsis cell cultures were directly transformed with A. tumefaciens for the overexpression of the CORONATINE INSENSITIVE 1 (COI1) jasmonate receptor. Cell cultures were established after transformation and continuously maintained and tested for the overexpression of COI1. The protocol was also previously used to silence Arabidopsis peroxidases and allows for long term maintenance of transformed cells. Details on culture maintenance, both in liquid and solid media are provided, alongside with evidence of protein expression to confirm transformation. The system described provides a powerful tool for synthetic biology to study signaling independent of developmental control and to obtain metabolites of interest for the biotechnological and medical sectors.

3.
New Phytol ; 229(4): 2120-2134, 2021 02.
Article in English | MEDLINE | ID: mdl-33124043

ABSTRACT

Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells. Here, direct incubation of leaf explants from the non-medicinal plant Arabidopsis thaliana with human breast cancer cells, selectively suppresses cancer cell growth. High-throughput LC-MS identified Arabidopsis metabolites. Protein and transcript levels of cell cycle regulators were examined in breast cancer cells. A synergistic effect by methyljasmonate (MeJA) and by compounds upregulated in the metabolome of MeJA-treated Arabidopsis leaves, on the breast cancer cell cycle, is associated with Cell Division Cycle 6 (CDC6), Cyclin-dependent kinase 2 (CDK2), Cyclins D1 and D3, indicating that key cell cycle components mediate cell viability reduction. Bioactives such as indoles, quinolines and cis-(+)-12-oxophytodienoic acid, in synergy, could act as anticancer compounds. Our work suggests a universal role for MeJA-treatment of Arabidopsis in altering the DNA replication regulator CDC6, supporting conservation, across kingdoms, of cell cycle regulation, through the crosstalk between the mechanistic target of rapamycin, mTOR and JAs. This study has important implications for the identification of metabolites with anti-cancer bioactivities in plants with no known medicinal pedigree and it will have applications in developing disease treatments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Neoplasms , Cell Cycle Proteins , Cell Line, Tumor , Cyclopentanes/pharmacology , Humans , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , TOR Serine-Threonine Kinases
4.
Curr Plant Biol ; 23: 100156, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32884907

ABSTRACT

This study analyzed the genetic diversity of 18 Yam mild mosaic virus (YMMV, genus Potyvirus) isolates collected from field surveys in Ghana (N = 8) and Nigeria (N = 10) in 2012-13. The full coat protein (CP) encoding region of the virus genome was sequenced and used for comparison and phylogenetic analysis of the YMMV isolates available in the NCBI nucleotide database. The mean nucleotide (nt) diversity was 13.4% among the 18 isolates (17 from D. alata and one from D. rotundata), 11.4% within the isolates of Ghana and 7.4% within the isolates of Nigeria. The phylogenetic clustering of the 18 YMMV isolates did not show correlation with the country of origin, and they aligned with the reference sequences of four of the 11 YMMV monophyletic groups representing the cosmopolitan group and the African group of YMMV isolates. High sequence homology of 99% between the YMMV sequence from Nigeria (CP12-DaN6-1) and a previously reported sequence from Togo (GenBank Accession Number AF548514) suggests a prevalence of seed-borne virus spread within the region. Understanding YMMV sequence diversity in West Africa aid in the improvement of diagnostic assays necessary for virus indexing and seed certification.

5.
Plants (Basel) ; 8(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212654

ABSTRACT

To date, several viruses of different genera have been reported to infect yam (Dioscorea spp.). The full diversity of viruses infecting yam, however, remains to be explored. High-throughput sequencing (HTS) methods are increasingly being used in the discovery of new plant viral genomes. In this study, we employed HTS on yam to determine whether any undiscovered viruses were present that would restrict the international distribution of yam germplasm. We discovered a new virus sequence present in 31 yam samples tested and have tentatively named this virus "yam virus Y" (YVY). Twenty-three of the samples in which YVY was detected showed mosaic and chlorotic leaf symptoms, but Yam mosaic virus was also detected in these samples. Complete genome sequences of two YVY viral isolates were assembled and found to contain five open reading frames (ORFs). ORF1 encodes a large replication-associated protein, ORF2, ORF3 and ORF4 constitute the putative triple gene block proteins, and ORF5 encodes a putative coat protein. Considering the species demarcation criteria of the family Betaflexiviridae, YVY should be considered as a novel virus species in the family Betaflexiviridae. Further work is needed to understand the association of this new virus with any symptoms and yield loss and its implication on virus-free seed yam production.

6.
Physiol Mol Plant Pathol ; 105: 54-66, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007374

ABSTRACT

In vitro culture offers many advantages for yam germplasm conservation, propagation and international distribution. However, low virus titres in the generated tissues pose a challenge for reliable virus detection, which makes it difficult to ensure that planting material is virus-free. In this study, we evaluated next-generation sequencing (NGS) for virus detection following yam propagation using a robust tissue culture methodology. We detected and assembled the genomes of novel isolates of already characterised viral species of the genera Badnavirus and Potyvirus, confirming the utility of NGS in diagnosing yam viruses and contributing towards the safe distribution of germplasm.

7.
Ann Bot ; 122(7): 1117-1129, 2018 12 31.
Article in English | MEDLINE | ID: mdl-29924303

ABSTRACT

Background and Aims: Cultured cell suspensions have been the preferred model to study the apoplast as well as to monitor metabolic and cell cycle-related changes. Previous work showed that methyl jasmonate (MeJA) inhibits leaf growth in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, with COI1 being the jasmonate (JA) receptor. Here, the effect of COI1 overexpression on the growth of stably transformed arabidopsis cell cultures is described. Methods: Time-course experiments were carried out to analyse gene expression, and protein and metabolite levels. Key Results: Both MeJA treatment and the overexpression of COI1 modify growth, by altering cell proliferation and expansion. DNA content as well as transcript patterns of cell cycle and cell wall remodelling markers were altered. COI1 overexpression also increases the protein levels of OLIGOGALACTURONIDE OXIDASE 1, BETA-GLUCOSIDASE/ENDOGLUCANASES and POLYGALACTURONASE INHIBITING PROTEIN2, reinforcing the role of COI1 in mediating defence responses and highlighting a link between cell wall loosening and growth regulation. Moreover, changes in the levels of the primary metabolites alanine, serine and succinic acid of MeJA-treated Arabidopsis cell cultures were observed. In addition, COI1 overexpression positively affects the availability of metabolites such as ß-alanine, threonic acid, putrescine, glucose and myo-inositol, thereby providing a connection between JA-inhibited growth and stress responses. Conclusions: This study contributes to the understanding of the regulation of growth and the production of metabolic resources by JAs and COI1. This will have important implications in dissecting the complex relationships between hormonal and cell wall signalling in plants. The work also provides tools to uncover novel mechanisms co-ordinating cell division and post-mitotic cell expansion in the absence of organ developmental control.


Subject(s)
Acetates/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Cyclopentanes/metabolism , Oxylipins/metabolism , Signal Transduction , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Division/genetics , Cell Wall/physiology , Gene Expression Regulation, Plant/physiology , Genes, cdc/physiology , Plant Proteins/metabolism
8.
Anal Biochem ; 546: 17-22, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29378167

ABSTRACT

Potyviruses (genus Potyvirus; family Potyviridae) are widely distributed and represent one of the most economically important genera of plant viruses. Therefore, their accurate detection is a key factor in developing efficient control strategies. However, this can sometimes be problematic particularly in plant species containing high amounts of polysaccharides and polyphenols such as yam (Dioscorea spp.). Here, we report the development of a reliable, rapid and cost-effective detection method for the two most important potyviruses infecting yam based on reverse transcription-recombinase polymerase amplification (RT-RPA). The developed method, named 'Direct RT-RPA', detects each target virus directly from plant leaf extracts prepared with a simple and inexpensive extraction method avoiding laborious extraction of high-quality RNA. Direct RT-RPA enables the detection of virus-positive samples in under 30 min at a single low operation temperature (37 °C) without the need for any expensive instrumentation. The Direct RT-RPA tests constitute robust, accurate, sensitive and quick methods for detection of potyviruses from recalcitrant plant species. The minimal sample preparation requirements and the possibility of storing RPA reagents without cold chain storage, allow Direct RT-RPA to be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories and seed certification facilities worldwide.


Subject(s)
Dioscorea/virology , Plant Extracts , Potyvirus/isolation & purification , Nucleic Acid Amplification Techniques , Potyvirus/genetics , Recombinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
9.
Arch Virol ; 163(4): 1057-1061, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29308543

ABSTRACT

A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity.


Subject(s)
Capsid Proteins/analysis , Dioscorea/virology , Nucleic Acid Amplification Techniques , Potyvirus/genetics , Reverse Transcription , Benzothiazoles , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , DNA Primers/chemical synthesis , DNA Primers/metabolism , Diamines , Fluorescent Dyes/chemistry , Gene Expression , Organic Chemicals/chemistry , Plant Diseases/virology , Plant Leaves/virology , Plant Tubers/virology , Potyvirus/metabolism , Quinolines , Sensitivity and Specificity
10.
Bio Protoc ; 8(1): e2672, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-34179227

ABSTRACT

Since the first discovery of badnaviruses (family Caulimoviridae, genus Badnavirus) in yam (Dioscorea spp.) germplasm in the 1970s (Harrison and Roberts, 1973), several hundred partial badnavirus reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences have been characterised ( Kenyon et al., 2008 ; Bousalem et al., 2009 ), but only a few complete Dioscorea bacilliform virus (DBV) genome sequences have been reported ( Phillips et al., 1999 ; Seal and Muller, 2007; Bömer et al., 2016 and 2017; Sukal et al., 2017 ; Umber et al., 2017 ). We have optimised a workflow involving total nucleic acid extractions and rolling circle amplification (RCA) combined with restriction enzyme analysis for the detection and amplification of DBVs present in yam germplasm. We have employed this approach successfully revealing three novel episomal yam badnaviruses ( Bömer et al., 2016 ). We proposed this to be a complementary method to denaturing gradient gel electrophoresis, which enables a rapid indication of badnavirus diversity as well as the identification of potentially integrated badnavirus sequences in the host genome ( Turaki et al., 2017 ). Here, we describe the step-by-step protocol to screen yam germplasm for badnavirus infections using RCA as an efficient research tool in the amplification and characterization of novel badnavirus genomes.

11.
Arch Virol ; 163(2): 533-538, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29134336

ABSTRACT

Yams (Dioscorea spp.) host a diverse range of badnaviruses (genus Badnavirus, family Caulimoviridae). The first complete genome sequence of Dioscorea bacilliform RT virus 3 (DBRTV3), which belongs to the monophyletic species group K5, is described. This virus is most closely related to Dioscorea bacilliform SN virus (DBSNV, group K4) based on a comparison of genome sequences. Recombination analysis identified a unique recombination event in DBRTV3, with DBSNV likely to be the major parent and Dioscorea bacilliform AL virus (DBALV) the minor parent, providing the first evidence for recombination in yam badnaviruses. This has important implications for yam breeding programmes globally.


Subject(s)
Badnavirus/genetics , Badnavirus/isolation & purification , Dioscorea/virology , Genome, Viral , Plant Diseases/virology , Recombination, Genetic , Badnavirus/classification , Base Sequence , Genetic Variation , Molecular Sequence Data , Phylogeny
12.
Viruses ; 9(7)2017 07 11.
Article in English | MEDLINE | ID: mdl-28696406

ABSTRACT

Badnaviruses (family Caulimoviridae, genus Badnavirus) have emerged as serious pathogens especially affecting the cultivation of tropical crops. Badnavirus sequences can be integrated in host genomes, complicating the detection of episomal infections and the assessment of viral genetic diversity in samples containing a complex mixture of sequences. Yam (Dioscorea spp.) plants are hosts to a diverse range of badnavirus species, and recent findings have suggested that mixed infections occur frequently in West African yam germplasm. Historically, the determination of the diversity of badnaviruses present in yam breeding lines has been achieved by cloning and sequencing of polymerase chain reaction (PCR) products. In this study, the molecular diversity of partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences from yam badnaviruses was analysed using PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE). This resulted in the identification of complex 'fingerprints' composed of multiple sequences of Dioscorea bacilliform viruses (DBVs). Many of these sequences show high nucleotide identities to endogenous DBV (eDBV) sequences deposited in GenBank, and fall into six monophyletic species groups. Our findings highlight PCR-DGGE as a powerful tool in badnavirus diversity studies enabling a rapid indication of sequence diversity as well as potential candidate integrated sequences revealed by their conserved nature across germplasm.


Subject(s)
Badnavirus/classification , Badnavirus/genetics , Denaturing Gradient Gel Electrophoresis/methods , Dioscorea/virology , Genetic Variation , Polymerase Chain Reaction/methods , Seeds/virology , Badnavirus/isolation & purification , DNA Fingerprinting/methods , Genotype , Phylogeny , Sequence Analysis, DNA
13.
Viruses ; 8(7)2016 07 07.
Article in English | MEDLINE | ID: mdl-27399761

ABSTRACT

Yam (Dioscorea spp.) plants are potentially hosts to a diverse range of badnavirus species (genus Badnavirus, family Caulimoviridae), but their detection is complicated by the existence of integrated badnavirus sequences in some yam genomes. To date, only two badnavirus genomes have been characterised, namely, Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform SN virus (DBSNV). A further 10 tentative species in yam have been described based on their partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences, generically referred to here as Dioscorea bacilliform viruses (DBVs). Further characterisation of DBV species is necessary to determine which represent episomal viruses and which are only present as integrated badnavirus sequences in some yam genomes. In this study, a sequence-independent multiply-primed rolling circle amplification (RCA) method was evaluated for selective amplification of episomal DBV genomes. This resulted in the identification and characterisation of nine complete genomic sequences (7.4-7.7 kbp) of existing and previously undescribed DBV phylogenetic groups from Dioscorea alata and Dioscorea rotundata accessions. These new yam badnavirus genomes expand our understanding of the diversity and genomic organisation of DBVs, and assist the development of improved diagnostic tools. Our findings also suggest that mixed badnavirus infections occur relatively often in West African yam germplasm.


Subject(s)
Badnavirus/classification , Badnavirus/isolation & purification , DNA, Viral/genetics , Dioscorea/virology , Plasmids , Badnavirus/genetics , Nucleic Acid Amplification Techniques/methods , RNA-Directed DNA Polymerase/genetics , Ribonuclease H/genetics
14.
J Virol Methods ; 222: 138-44, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26115609

ABSTRACT

Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/µl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories.


Subject(s)
Dioscorea/virology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Potyvirus/isolation & purification , Africa, Western , Recombinases/metabolism , Reproducibility of Results , Reverse Transcription , Sensitivity and Specificity , Temperature , Time Factors
15.
Plant Physiol ; 161(4): 1930-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23439917

ABSTRACT

Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular "stand-by mode" by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition.


Subject(s)
Acetates/pharmacology , Arabidopsis/cytology , Arabidopsis/genetics , Cyclopentanes/pharmacology , Endoreduplication/drug effects , Oxylipins/pharmacology , Plant Leaves/cytology , Plant Leaves/growth & development , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Count , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus Size/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Cluster Analysis , Cotyledon/drug effects , Cotyledon/growth & development , DNA Replication/drug effects , DNA, Plant/metabolism , Down-Regulation/drug effects , Endoreduplication/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Meristem/cytology , Meristem/drug effects , Mitosis/drug effects , Mitosis/genetics , Models, Biological , Phenotype , Plant Leaves/drug effects , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...