Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 1764, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32019990

ABSTRACT

Neutron grating interferometry (nGI) is a unique technique allowing to probe magnetic and nuclear properties of materials not accessible in standard neutron imaging. The signal-to-noise ratio of an nGI setup is strongly dependent on the achievable visibility. Hence, for analysis of weak signals or short measurement times a high visibility is desired. We developed a new Talbot-Lau interferometer using the third Talbot order with an unprecedented visibility (0.74) over a large field of view. Using the third Talbot order and the resulting decreased asymmetry allows to access a wide correlation length range. Moreover, we have used a novel technique for the production of the absorption gratings which provides nearly binary gratings even for thermal neutrons. The performance of the new interferometer is demonstrated by visualizing the local magnetic domain wall density in electrical steel sheets when influenced by residual stress induced by embossing. We demonstrate that it is possible to affect the density of the magnetic domain walls by embossing and therefore to engineer the guiding of magnetic fields in electrical steel sheets. The excellent performance of our new setup will also facilitate future studies of dynamic effects in electric steels and other systems.

2.
Sci Rep ; 7(1): 15177, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127327

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 10734, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878313

ABSTRACT

Besides epitaxial mismatch that can be accommodated by lattice distortions and/or octahedral rotations, ferroelectric-ferromagnetic interfaces are affected by symmetry mismatch and subsequent magnetic ordering. Here, we have investigated La0.67 Sr0.33 MnO3 (LSMO) samples with varying underlying unit cells (uc) of BaTiO3 (BTO) layer on (001) and (110) oriented substrates in order to elucidate the role of symmetry mismatch. Lattice mismatch for 3 uc of BTO and symmetry mismatch for 10 uc of BTO, both associated with local MnO6 octahedral distortions of the (001) LSMO within the first few uc, are revealed by scanning transmission electron microscopy. Interestingly, we find exchange bias along the in-plane [110]/[100] directions only for the (001) oriented samples. Polarized neutron reflectivity measurements confirm the existence of a layer with zero net moment only within (001) oriented samples. First principle density functional calculations show that even though the bulk ground state of LSMO is ferromagnetic, a large lattice constant together with an excess of La can stabilize an antiferromagnetic LaMnO3-type phase at the interface region and explain the experimentally observed exchange bias. Atomic scale tuning of MnO6 octahedra can thus be made possible via symmetry mismatch at heteroepitaxial interfaces. This aspect can act as a vital parameter for structure-driven control of physical properties.

4.
Sci Rep ; 6: 33986, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677227

ABSTRACT

Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

6.
Sci Rep ; 6: 20898, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26879249

ABSTRACT

We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

7.
Phys Rev Lett ; 115(20): 206404, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26613459

ABSTRACT

We determined the bulk electronic structure of the prototypical Heusler compound Cu(2)MnAl by measuring the angular correlation of annihilation radiation using spin-polarized positrons. To this end, a new algorithm for reconstructing 3D densities from projections is introduced that allows us to corroborate the excellent agreement between our electronic structure calculations and the experimental data. The contribution of each individual Fermi surface sheet to the magnetization was identified, and summed to a total spin magnetic moment of 3.6±0.5 µ(B)/f.u..

9.
Rev Sci Instrum ; 84(4): 043905, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23635207

ABSTRACT

Angular correlation of annihilation radiation (ACAR) is a well established technique for the investigation of the electronic structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. For this reason, the focus of this work is put on the discussion of a newly developed source-sample stage of the new 2D-ACAR spectrometer at Technische Universität München which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot diameter is d(FWHM) = 5.4 mm, with a high efficiency over the whole energy spectrum of the (22)Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline α-quartz, which serves as a model system for the determination of the total resolution. A value of (1.53 × 1.64) mrad(2) FWHM was achieved at room temperature.

10.
Sci Technol Adv Mater ; 11(2): 025001, 2010 Apr.
Article in English | MEDLINE | ID: mdl-27877329

ABSTRACT

A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

11.
Nat Mater ; 6(11): 882-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17873862

ABSTRACT

Doped EuO is an attractive material for the fabrication of proof-of-concept spintronic devices. Yet for decades its use has been hindered by its instability in air and the difficulty of preparing and patterning high-quality thin films. Here, we establish EuO as the pre-eminent material for the direct integration of a carrier-concentration-matched half-metal with the long-spin-lifetime semiconductors silicon and GaN, using methods that transcend these difficulties. Andreev reflection measurements reveal that the spin polarization in doped epitaxial EuO films exceeds 90%, demonstrating that EuO is a half-metal even when highly doped. Furthermore, EuO is epitaxially integrated with silicon and GaN. These results demonstrate the high potential of EuO for spintronic devices.


Subject(s)
Europium/chemistry , Gallium/chemistry , Oxides/chemistry , Silicon/chemistry , Computer Simulation , Crystallography, X-Ray , Nanoparticles/chemistry , Nanotechnology/methods , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...