Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(1): 105822, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36636339

ABSTRACT

Cultivated meat is a promising technology with the potential to mitigate the ethical and environmental issues associated with traditional meat. Fat plays a key role in the meat flavor; therefore, development of suitable adipogenic protocols for livestock is essential. The traditional adipogenic cocktail containing IBMX, dexamethasone, insulin and rosiglitazone is not food-compatible. Here, we demonstrate that of the four inducers only insulin and rosiglitazone are necessary in both serum-free (DMAD) and serum-containing media, with DMAD outperforming FBS. Two glucocorticoid receptor activators, progesterone and hydrocortisone, found in DMAD and FBS, affect differentiation homogeneity, without playing an essential role in activating adipogenic genes. Importantly, this protocol leads to mature adipocytes in 3D culture. This was demonstrated in both media types and in four species: ruminant and monogastric. We therefore propose a simplified one-step adipogenic protocol which, given the replacement of rosiglitazone by a food-compatible PPARγ agonist, is suitable for making cultivated fat.

2.
Nat Commun ; 13(1): 5099, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042233

ABSTRACT

Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.


Subject(s)
Genome , Genomics , DNA/genetics , Gene Expression , Gene Expression Regulation
3.
Nat Commun ; 11(1): 6141, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262328

ABSTRACT

Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression levels remains unclear. Here we apply deep learning on over 20,000 mRNA datasets to examine the genetic regulatory code controlling mRNA abundance in 7 model organisms ranging from bacteria to Human. In all organisms, we can predict mRNA abundance directly from DNA sequence, with up to 82% of the variation of transcript levels encoded in the gene regulatory structure. By searching for DNA regulatory motifs across the gene regulatory structure, we discover that motif interactions could explain the whole dynamic range of mRNA levels. Co-evolution across coding and non-coding regions suggests that it is not single motifs or regions, but the entire gene regulatory structure and specific combination of regulatory elements that define gene expression levels.


Subject(s)
Deep Learning , Evolution, Molecular , Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Bacteria/genetics , Base Sequence , Drosophila melanogaster/genetics , Humans , Mice , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics
4.
FEMS Microbiol Lett ; 367(13)2020 07 01.
Article in English | MEDLINE | ID: mdl-32589214

ABSTRACT

The main transcriptional regulator of leucine biosynthesis in the yeast Saccharomyces cerevisiae is the transcription factor Leu3. It has previously been reported that Leu3 always binds to its target genes, but requires activation to induce their expression. In a recent large-scale study of high-resolution transcription factor binding site identification, we showed that Leu3 has divergent binding sites in different cultivation conditions, thereby questioning the results of earlier studies. Here, we present a follow-up study using chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate the influence of leucine supplementation on Leu3 binding activity and strength. With this new data set we are able to show that Leu3 exhibits changes in binding activity in response to changing levels of leucine availability.


Subject(s)
Leucine/pharmacology , Protein Binding/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Trans-Activators/metabolism , Chromatin Immunoprecipitation , Chromatin Immunoprecipitation Sequencing , Leucine/metabolism , Saccharomyces cerevisiae/genetics
5.
Nucleic Acids Res ; 47(10): 4986-5000, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30976803

ABSTRACT

Transcription factors (TF) are central to transcriptional regulation, but they are often studied in relative isolation and without close control of the metabolic state of the cell. Here, we describe genome-wide binding (by ChIP-exo) of 15 yeast TFs in four chemostat conditions that cover a range of metabolic states. We integrate this data with transcriptomics and six additional recently mapped TFs to identify predictive models describing how TFs control gene expression in different metabolic conditions. Contributions by TFs to gene regulation are predicted to be mostly activating, additive and well approximated by assuming linear effects from TF binding signal. Notably, using TF binding peaks from peak finding algorithms gave distinctly worse predictions than simply summing the low-noise and high-resolution TF ChIP-exo reads on promoters. Finally, we discover indications of a novel functional role for three TFs; Gcn4, Ert1 and Sut1 during nitrogen limited aerobic fermentation. In only this condition, the three TFs have correlated binding to a large number of genes (enriched for glycolytic and translation processes) and a negative correlation to target gene transcript levels.


Subject(s)
Eukaryotic Cells/metabolism , Gene Expression Profiling , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cluster Analysis , Gene Ontology , Models, Genetic , Nitrogen/metabolism , Protein Binding , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
7.
Biol Methods Protoc ; 4(1): bpz011, 2019.
Article in English | MEDLINE | ID: mdl-32395628

ABSTRACT

The decrease of sequencing cost in the recent years has made genome-wide studies of transcription factor (TF) binding through chromatin immunoprecipitation methods like ChIP-seq and chromatin immunoprecipitation with lambda exonuclease (ChIP-exo) more accessible to a broader group of users. Especially with ChIP-exo, it is now possible to map TF binding sites in more detail and with less noise than previously possible. These improvements came at the cost of making the analysis of the data more challenging, which is further complicated by the fact that to this date no complete pipeline is publicly available. Here we present a workflow developed specifically for ChIP-exo data and demonstrate its capabilities for data analysis. The pipeline, which is completely publicly available on GitHub, includes all necessary analytical steps to obtain a high confidence list of TF targets starting from raw sequencing reads. During the pipeline development, we emphasized the inclusion of different quality control measurements and we show how to use these so users can have confidence in their obtained results.

8.
FEMS Yeast Res ; 19(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30590648

ABSTRACT

One of the fundamental processes that determine cellular fate is regulation of gene transcription. Understanding these regulatory processes is therefore essential for understanding cellular responses to changes in environmental conditions. At the core promoter, the regulatory region containing the transcription start site (TSS), all inputs regulating transcription are integrated. Here, we used Cap Analysis of Gene Expression (CAGE) to analyze the pattern of TSSs at four different environmental conditions (limited in ethanol, limited in nitrogen, limited in glucose and limited in glucose under anaerobic conditions) using the Saccharomyces cerevisiae strain CEN.PK113-7D. With this experimental setup, we were able to show that the TSS landscape in yeast is stable at different metabolic states of the cell. We also show that the spatial distribution of transcription initiation events, described by the shape index, has a surprisingly strong negative correlation with measured gene expression levels, meaning that genes with higher expression levels tend to have a broader distribution of TSSs. Our analysis supplies a set of high-quality TSS annotations useful for metabolic engineering and synthetic biology approaches in the industrially relevant laboratory strain CEN.PK113-7D, and provides novel insights into yeast TSS dynamics and gene regulation.


Subject(s)
Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Transcription Initiation Site , Transcription, Genetic , Anaerobiosis , Ethanol/metabolism , Gene Expression Profiling , Glucose/metabolism , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism
9.
Cell Commun Signal ; 12: 56, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25214434

ABSTRACT

BACKGROUND: Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. RESULTS: We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. CONCLUSION: Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.


Subject(s)
Autophagy , Models, Biological , Computer Simulation , HeLa Cells , Humans , Lysosomes/metabolism , MCF-7 Cells , Macrolides/pharmacology , Phagosomes/metabolism , Reproducibility of Results , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...