Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202404528, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722260

ABSTRACT

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

2.
Org Lett ; 23(19): 7635-7639, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34533955

ABSTRACT

Bidirectional photoswitching of arylazopyrazoles with visible light is enabled by substitution with pyrrolidine and piperidine in the ortho-position of the phenyl ring. The absorption maxima were red-shifted and the molar absorption coefficients in the visible range increased significantly, allowing the use of blue light (λ = 465 nm) for the E → Z isomerization and red light (λ = 600 nm) for the Z → E isomerization. N-Methylation of the pyrazole leads to an excellent thermal stability of the Z isomer.

SELECTION OF CITATIONS
SEARCH DETAIL
...