Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 158: 157-172, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813856

ABSTRACT

Norway had historically been considered free of marteiliosis in bivalves since the disease surveillance programme began in 1995. However, in 2016, Marteilia pararefringens, a protistan parasite of mussels Mytilus spp., was described in a heliothermic lagoon-a poll-previously used to produce flat oyster spat. To study whether the parasite was introduced, and possibly spread, via the historical flat oyster networks on the south and west coast, we sampled aquaculture polls that were part of different networks of farmers and wild, natural polls with no aquaculture activity. Additionally, we sampled mussel banks influenced by polls and sheltered bays that could have a similar environment to that of polls. We identified 7 sites with M. pararefringens-infected mussel populations: 5 were polls used in flat oyster production and 2 were in fjord areas with no known connection to any bivalve aquaculture. Prevalence ranged between 2 and 88%. At one site, Trysfjorden, we found M. pararefringens in atypical organs, including the gills, mantle, and intestine. Marteilia-like cells were also observed in the epithelium, lumen, and surrounding connective tissue of metanephridia and in the sinus of the anterior retractor muscle. Our results demonstrate that the parasite is more widespread than previously thought and is neither isolated to polls nor connected directly to aquaculture activity. Lastly, our findings highlight the need for an improved sampling strategy in surveillance programmes to detect marteiliosis in mussels.


Subject(s)
Aquaculture , Animals , Norway/epidemiology , Mytilus/parasitology
2.
Dis Aquat Organ ; 148: 153-166, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35445663

ABSTRACT

Agapollen is a traditional heliothermic marine oyster lagoon in western Norway, representing the northernmost site of any Marteilia sp. protists detected in Europe. The semi-closed lagoon is a unique site to study the life cycle and development of M. pararefringens in naïve mussels. Two baskets with uninfected mussels were deployed in the lagoon outlet in May and October 2018, respectively, and sampled every 6 wk. The parasite was first detected in the mussels by PCR in early July and by histology in late August. By then, M. pararefringens had developed into mature stages, indicating a rapid development during mid-summer. Sporulation occurred during autumn. Mussels deployed in October never became infected, indicating that transmission was restricted to the warmest period of the year. Pronounced pathology was observed in infected mussels, including degenerated digestive tubules and infiltration of haemocytes. Mussel mortality was observed in the baskets, but whether this was due to infections of M. pararefringens or other environmental factors could not be determined. Plankton samples from the lagoon were also collected for PCR analysis. These samples, dominated by copepods, were positive for M. pararefringens in summer. In sorted samples, M. pararefringens was detected in the Acartia spp. and Paracartia grani fractions between July and October. These plankton copepods are therefore potentially involved in the life cycle of M. pararefringens.


Subject(s)
Copepoda , Mytilus edulis , Mytilus , Ostreidae , Parasites , Animals , Copepoda/parasitology , Eukaryota , Mytilus/parasitology , Mytilus edulis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...