Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Braz J Psychiatry ; 34(2): 168-75, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22729413

ABSTRACT

OBJECTIVES: Olanzapine, an atypical antipsychotic drug with affinities for dopamine, serotonin, and histamine binding sites appears to be associated with substantial weight gain and metabolic alterations. The aim of this study was to evaluate weight gain and metabolic alterations in rats treated with olanzapine on a hypercaloric diet. METHODS: We used 40 rats divided into 4 groups: Group 1, standard food and water conditions (control); Group 2, standard diet plus olanzapine; Group 3, cafeteria diet (hypercaloric); and Group 4, olanzapine plus cafeteria diet. Olanzapine was administered by gavage at a dose of 3 mg/kg for 9 weeks. RESULTS There were no significant changes in the cholesterol levels in any group. Glucose levels increased in Group 3 by the fourth week. Triglyceride levels were altered in group 2 toward the end of the experiment. Leptin levels decreased in Groups 2 and 4. Complex II activity in the muscles and liver was altered in Group 2 (muscle), and Groups 2, 3, and 4 (liver). Complex IV activity was altered only in the liver in Group 2, without significant alterations within the muscles. CONCLUSION: These results suggest that olanzapine is correlated with weight gain and the risks associated with obesity.


Subject(s)
Antipsychotic Agents/adverse effects , Benzodiazepines/adverse effects , Energy Metabolism/drug effects , Leptin/blood , Weight Gain/drug effects , Animals , Male , Olanzapine , Random Allocation , Rats , Rats, Wistar
2.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 34(2): 168-175, June 2012. ilus, tab
Article in English | LILACS | ID: lil-638698

ABSTRACT

OBJECTIVES: Olanzapine, an atypical antipsychotic drug with affinities for dopamine, serotonin, and histamine binding sites appears to be associated with substantial weight gain and metabolic alterations. The aim of this study was to evaluate weight gain and metabolic alterations in rats treated with olanzapine on a hypercaloric diet. METHODS: We used 40 rats divided into 4 groups: Group 1, standard food and water conditions (control); Group 2, standard diet plus olanzapine; Group 3, cafeteria diet (hypercaloric); and Group 4, olanzapine plus cafeteria diet. Olanzapine was administered by gavage at a dose of 3 mg/kg for 9 weeks. RESULTS There were no significant changes in the cholesterol levels in any group. Glucose levels increased in Group 3 by the fourth week. Triglyceride levels were altered in group 2 toward the end of the experiment. Leptin levels decreased in Groups 2 and 4. Complex II activity in the muscles and liver was altered in Group 2 (muscle), and Groups 2, 3, and 4 (liver). Complex IV activity was altered only in the liver in Group 2, without significant alterations within the muscles. CONCLUSION: These results suggest that olanzapine is correlated with weight gain and the risks associated with obesity.


OBJETIVOS: A olanzapina, uma droga antipsicótica atípica com afinidade por locais de ligação de dopamina, serotonina e histamina, parece se associar a um ganho de peso e a alterações metabólicas consideráveis. O objetivo desse estudo foi avaliar o ganho de peso e as alterações metabólicas em ratos tratados com olanzapina numa dieta hipercalórica. MÉTODOS: Usamos 40 ratos divididos em 4 grupos: Grupo 1, condições padrão de alimento e água (controle); Grupo 2, dieta padrão mais olanzapina; Grupo 3, dieta hipercalórica; e Grupo 4, olanzapina mais dieta hipercalórica. Olanzapina foi administrada por gavagem a uma dose de 3 mg/kg por 9 semanas. RESULTADOS: Não houve alterações significativas nos níveis de colesterol em qualquer um dos grupos. Os níveis de glicose aumentaram no Grupo 3 por volta da quarta semana. Os níveis de triglicerídeos estavam alterados no Grupo 2 ao final do experimento. Os níveis de leptina diminuíram nos Grupos 2 e 4. A atividade do complexo II nos músculos e no fígado se alterou no Grupo 2 (músculos) e nos Grupos 2, 3 e 4 (fígado). A atividade do complexo IV se alterou apenas no fígado no Grupo 2, sem alterações significativas nos músculos. CONCLUSÃO: Esses resultados sugerem que olanzapina se correlaciona ao ganho de peso e aos riscos associados à obesidade.


Subject(s)
Animals , Male , Rats , Antipsychotic Agents/adverse effects , Benzodiazepines/adverse effects , Energy Metabolism/drug effects , Leptin/blood , Weight Gain/drug effects , Random Allocation , Rats, Wistar
3.
Braz J Psychiatry ; 33(2): 171-5, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21829911

ABSTRACT

OBJECTIVE: Bipolar disorder is a severe, recurrent, and often chronic psychiatric illness associated with significant functional impairment, morbidity, and mortality. Creatine kinase is an important enzyme, particularly for cells with high and fluctuating energy requirements, such as neurons, and is a potential marker of brain injury. The aim of the present study was to compare serum creatine kinase levels between bipolar disorder patients, in the various phases (depressive, manic, and euthymic), and healthy volunteers. METHOD: Forty-eight bipolar patients were recruited: 18 in the euthymic phase; 17 in the manic phase; and 13 in the depressive phase. The control group comprised 41 healthy volunteers. The phases of bipolar disorder were defined as follows: euthymic-not meeting the DSM-IV criteria for a mood episode and scoring < 8 on the Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS); manic-scoring < 7 on the HDRS and > 7 on the YMRS; depressive-scoring > 7 on the HDRS and < 7 on the YMRS. Patients in mixed phases were excluded. Blood samples were collected from all participants. RESULTS: Creatine kinase levels were higher in the manic patients than in the controls. However, we observed no significant difference between euthymic and depressive patients in terms of the creatine kinase level. CONCLUSION: Our results suggest that the clinical differences among the depressive, manic, and euthymic phases of bipolar disorder are paralleled by contrasting levels of creatine kinase. However, further studies are needed in order to understand the state-dependent differences observed in serum creatine kinase activity.


Subject(s)
Bipolar Disorder/blood , Creatine Kinase/blood , Adult , Biomarkers/blood , Bipolar Disorder/psychology , Case-Control Studies , Female , Humans , Male
4.
Article in English | LILACS | ID: lil-596415

ABSTRACT

OBJECTIVE: Bipolar disorder is a severe, recurrent, and often chronic psychiatric illness associated with significant functional impairment, morbidity, and mortality. Creatine kinase is an important enzyme, particularly for cells with high and fluctuating energy requirements, such as neurons, and is a potential marker of brain injury. The aim of the present study was to compare serum creatine kinase levels between bipolar disorder patients, in the various phases (depressive, manic, and euthymic), and healthy volunteers. METHOD: Forty-eight bipolar patients were recruited: 18 in the euthymic phase; 17 in the manic phase; and 13 in the depressive phase. The control group comprised 41 healthy volunteers. The phases of bipolar disorder were defined as follows: euthymic-not meeting the DSM-IV criteria for a mood episode and scoring < 8 on the Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS); manic-scoring < 7 on the HDRS and > 7 on the YMRS; depressive-scoring > 7 on the HDRS and < 7 on the YMRS. Patients in mixed phases were excluded. Blood samples were collected from all participants. RESULTS: Creatine kinase levels were higher in the manic patients than in the controls. However, we observed no significant difference between euthymic and depressive patients in terms of the creatine kinase level. CONCLUSION: Our results suggest that the clinical differences among the depressive, manic, and euthymic phases of bipolar disorder are paralleled by contrasting levels of creatine kinase. However, further studies are needed in order to understand the state-dependent differences observed in serum creatine kinase activity.


OBJETIVO: O transtorno do humor bipolar é uma doença psiquiátrica grave, recorrente e crônica associada a significativo prejuízo funcional, morbidade e mortalidade. A creatina quinase tem sido proposta como um marcador de dano cerebral. A creatina quinase é uma enzima importante principalmente para células que necessitam de uma grande quantidade de energia, como os neurônios. O objetivo do presente estudo foi comparar os níveis de creatina quinase entre as fases depressiva, maníaca e eutímica de pacientes com transtorno do humor bipolar. MÉTODO: Para avaliação dos níveis de creatina quinase no soro, 48 pacientes bipolares foram recrutados; 18 estavam eutímicos, 17 estavam em mania e 13 em episódio depressivo. Foi feita também uma comparação com um grupo controle que incluiu 41 voluntários saudáveis. Grupo eutimia: foram incluídos os pacientes que não cumpriam os critérios do DSM-IV para episódios de humor e deveriam ter a pontuação inferior a oito nas escalas de avaliação de mania (YMRS) e depressão (HDRS); grupo mania: foram incluídos os pacientes que apresentavam YMRS > 7 e HDRS < 7; grupo depressão: foram incluídos os pacientes que apresentavam HDRS > 7 e YMRS < 7. Os pacientes em episódios mistos não foram incluídos no estudo. Amostras de sangue foram coletadas de todos os participantes. RESULTADOS: Durante a mania, os níveis de creatina quinase foram aumentados em comparação com voluntários saudáveis. Entretanto, não houve diferença significativa nos níveis de creatina quinase em pacientes eutímicos e depressivos, quando comparados com o grupo controle. CONCLUSÃO: Nossos resultados sugerem que as fases maníaca, depressiva e eutímica do transtorno do humor bipolar, além de apresentarem sintomatologia distinta, também podem ser diferenciadas pelo nível de creatina quinase presente no sangue do paciente. Entretanto, mais estudos são necessários para entender as diferenças observadas na atividade da creatina quinase durante as fases do transtorno do humor bipolar.


Subject(s)
Adult , Female , Humans , Male , Bipolar Disorder/blood , Creatine Kinase/blood , Biomarkers/blood , Bipolar Disorder/psychology , Case-Control Studies
5.
Neurosci Lett ; 434(1): 139-43, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18304734

ABSTRACT

Encephalopathy may accompany acute or chronic renal failure, and the mechanisms responsible for neurological complications in patients with renal failure are poorly known. Considering that creatine kinase (CK) is important for brain energy homeostasis and is inhibited by free radicals, and that oxidative stress is probably involved in the pathogenesis of uremic encephalopathy, we measured CK activity (hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex) in brain if rats submitted to renal ischemia and the effect of administration of antioxidants (N-acetylcysteine, NAC and deferoxamine, DFX) on this enzyme. We verified that CK activity was not altered in cerebellum and striatum of rats. CK activity was inhibited in prefrontal cortex and hippocampus of rats 12h after renal ischemia. The treatment with antioxidants prevented such effect. Cerebral cortex was also affected, but in this area CK activity was inhibited 6 and 12h after renal ischemia. Moreover, only NAC or NAC plus DFX were able to prevent the inhibition on the enzyme. Although it is difficult to extrapolate our findings to the human condition, the inhibition of brain CK activity after renal failure may be associated to neuronal loss and may be involved in the pathogenesis of uremic encephalopathy.


Subject(s)
Antioxidants/pharmacology , Brain Diseases, Metabolic/drug therapy , Brain/drug effects , Creatine Kinase/antagonists & inhibitors , Oxidative Stress/drug effects , Uremia/drug therapy , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Brain/enzymology , Brain/physiopathology , Brain Diseases, Metabolic/enzymology , Brain Diseases, Metabolic/physiopathology , Creatine Kinase/metabolism , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Down-Regulation/drug effects , Down-Regulation/physiology , Ischemia/complications , Kidney Diseases/complications , Male , Nerve Degeneration/drug therapy , Nerve Degeneration/enzymology , Nerve Degeneration/physiopathology , Oxidative Stress/physiology , Rats , Rats, Wistar , Subcellular Fractions , Time Factors , Treatment Outcome , Uremia/enzymology , Uremia/physiopathology
6.
Neurochem Res ; 31(11): 1375-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17063391

ABSTRACT

It is well described that impairment of energy production has been implicated in the pathogenesis of a number of diseases. Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy (ECT) to minimize its side effects, little progress has been made in understanding its mechanism of action. In this work, our aim was to measure the activities of mitochondrial respiratory chain complexes II and IV and succinate dehydrogenase from rat brain after acute and chronic electroconvulsive shock (ECS). Our results showed that mitochondrial respiratory chain enzymes activities were increased after acute ECS in hippocampus, striatum and cortex of rats. Besides, we also demonstrated that complex II activity was increased after chronic ECS in cortex, while hippocampus and striatum were not affected. Succinate dehydrogenase, however, was inhibited after chronic ECS in striatum, activated in cortex and not affected in hippocampus. Finally, complex IV was not affected by chronic ECS in hippocampus, striatum and cortex. Our findings demonstrated that brain metabolism is altered by ECS.


Subject(s)
Brain Chemistry/physiology , Electron Transport/physiology , Electroshock , Mitochondria/metabolism , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cerebral Cortex/metabolism , Hippocampus/drug effects , Hippocampus/enzymology , Hippocampus/metabolism , Male , Neostriatum/drug effects , Neostriatum/enzymology , Neostriatum/metabolism , Rats , Rats, Wistar , Succinate Dehydrogenase/metabolism
7.
Neurosci Lett ; 404(3): 254-7, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16797841

ABSTRACT

Although several advances have occurred concerning the use of electroconvulsive therapy, little progress has been made in understanding the mechanisms underlying its therapeutic or side effects. Na(+),K(+)-ATPase is an important enzyme of central nervous system, responsible for ionic gradient maintenance and consumption of approximately 40-50% of brain ATP. This work was performed in order to determine Na(+),K(+)-ATPase activity after acute and chronic electroconvulsive shock. Results showed an inhibition of Na(+),K(+)-ATPase activity in the hippocampus 48 h, 7, 30, 60 and 90 days after a single electroconvulsive shock. Chronic treatment diminished the enzyme activity in the hippocampus 7 and 30 days after electroconvulsive (ECS) sessions. Our findings demonstrated that Na(+),K(+)-ATPase activity is altered by ECS.


Subject(s)
Electroconvulsive Therapy/adverse effects , Hippocampus/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Male , Rats , Rats, Wistar
8.
Neurochem Res ; 31(7): 877-81, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16794855

ABSTRACT

Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding its mechanism of action. Creatine kinase is a crucial enzyme for brain energy homeostasis, and a decrease of its activity has been associated with neuronal death. This work was performed in order to evaluate creatine kinase activity from rat brain after acute and chronic electroconvulsive shock. Results showed an inhibition of creatine kinase activity in hippocampus, striatum and cortex, after acute and chronic electroconvulsive shock. Our findings demonstrated that creatine kinase activity is altered by electroconvulsive shock.


Subject(s)
Creatine Kinase/metabolism , Electroconvulsive Therapy , Animals , Brain/enzymology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...