Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(37): 6430-6446, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37604688

ABSTRACT

Auditory perception is fundamental to human development and communication. However, no long-term studies have been performed on the plasticity of the auditory system as a function of musical training from childhood to adulthood. The long-term interplay between developmental and training-induced neuroplasticity of auditory processing is still unknown. We present results from AMseL (Audio and Neuroplasticity of Musical Learning), the first longitudinal study on the development of the human auditory system from primary school age until late adolescence. This 12-year project combined neurologic and behavioral methods including structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory tests. A cohort of 112 typically developing participants (51 male, 61 female), classified as "musicians" (n = 66) and "nonmusicians" (n = 46), was tested at five measurement timepoints. We found substantial, stable differences in the morphology of auditory cortex (AC) between musicians and nonmusicians even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. Maturational plasticity led to a continuous increase in white matter myelination and systematic changes of the auditory evoked P1-N1-P2 complex (decreasing latencies, synchronization effects between hemispheres, and amplitude changes) regardless of musical expertise. Musicians showed substantial training-related changes at the neurofunctional level, in particular more synchronized P1 responses and bilaterally larger P2 amplitudes. Musical training had a positive influence on elementary auditory perception (frequency, tone duration, onset ramp) and pattern recognition (rhythm, subjective pitch). The observed interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.Significance Statement We present results from AMseL (Audio and Neuroplasticity of Musical Learning), a 12-year longitudinal study on the development of the human auditory system from childhood to adulthood that combined structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory discrimination and pattern recognition tests. A total of 66 musicians and 46 nonmusicians were tested at five timepoints. Substantial, stable differences in the morphology of auditory cortex (AC) were found between the two groups even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. We also observed neuroplastic and perceptual changes with age and musical practice. This interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.


Subject(s)
Auditory Cortex , Music , Child , Adolescent , Humans , Female , Male , Young Adult , Longitudinal Studies , Learning , Magnetoencephalography
2.
Front Neurosci ; 16: 1041397, 2022.
Article in English | MEDLINE | ID: mdl-36685231

ABSTRACT

Introduction: The present study aims to explore the extent to which auditory processing is reflected in the prefrontal cortex. Methods: Using magnetoencephalography (MEG), we investigated the chronology of primary and secondary auditory responses and associated co-activation in the orbitofrontal cortex in a large cohort of 162 participants of various ages. The sample consisted of 38 primary school children, 39 adolescents, 43 younger, and 42 middle-aged adults and was further divided into musically experienced participants and non-musicians by quantifying musical training and aptitude parameters. Results: We observed that the co-activation in the orbitofrontal cortex [Brodmann-Area 10 (BA10)] strongly depended on musical expertise but not on age. In the musically experienced groups, a systematic coincidence of peak latencies of the primary auditory P1 response and the co-activated response in the orbitofrontal cortex was observed in childhood at the onset of musical education. In marked contrast, in all non-musicians, the orbitofrontal co-activation occurred 25-40 ms later when compared with the P1 response. Musical practice and musical aptitude contributed equally to the observed activation and co-activation patterns in the auditory and orbitofrontal cortex, confirming the reciprocal, interrelated influence of nature, and nurture in the musical brain. Discussion: Based on the observed ageindependent differences in the chronology and lateralization of neurological responses, we suggest that orbitofrontal functions may contribute to musical learning at an early age.

SELECTION OF CITATIONS
SEARCH DETAIL
...