Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858618

ABSTRACT

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Aged , Aging , Animals , Bone Marrow , Humans , Inflammation , Mice
2.
Stem Cell Reports ; 17(1): 143-158, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34942088

ABSTRACT

The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics.


Subject(s)
Cell Differentiation , Gene Expression , Genetic Vectors/genetics , Plasmids/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts , Gene Expression Profiling , Humans , Mice , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...