Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 117(13): 2664-2676, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34048536

ABSTRACT

AIMS: Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS: Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION: Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.


Subject(s)
B-Lymphocyte Subsets/metabolism , Cell Proliferation , Chemokine CXCL13/metabolism , Chemotaxis, Leukocyte , Lymph Nodes/metabolism , Lymphocyte Activation , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, CXCR5/metabolism , Animals , B-Lymphocyte Subsets/immunology , Chemokine CXCL13/genetics , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Immunoglobulins/metabolism , Lymph Nodes/immunology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardium/immunology , Myocardium/pathology , Phenotype , RNA-Seq , Receptors, CXCR5/genetics , Signal Transduction , Single-Cell Analysis , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
2.
J Clin Invest ; 129(11): 4922-4936, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31408441

ABSTRACT

T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Herein, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class-II-restricted epitopes, we found that myosin heavy chain alpha (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in mice. Transferred MYHCA614-629-specific CD4+ T (TCR-M) cells selectively accumulated in the myocardium and mediastinal lymph nodes (med-LN) of infarcted mice, acquired a Treg phenotype with a distinct pro-healing gene expression profile, and mediated cardioprotection. Myocardial Treg cells were also detected in autopsies from patients who suffered a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in MI-patients. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence showing that MI-context induces pro-healing T cell autoimmunity in mice and confirms the existence of an analogous heart/med-LN/T cell axis in MI patients.


Subject(s)
Antigens/immunology , Myocardial Infarction/immunology , Myocardium/immunology , Myosin Heavy Chains/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/genetics , Mice , Mice, Transgenic , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/pathology , Myosin Heavy Chains/genetics , Positron Emission Tomography Computed Tomography , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...