Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 199: 106562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870558

ABSTRACT

For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.


Subject(s)
Lipid Peroxidation , Oxidative Stress , Animals , Antioxidants/metabolism , Environmental Monitoring , Tidal Waves , Protein Carbonylation , Carotenoids/metabolism , Bivalvia/physiology , Bivalvia/metabolism , Mytilidae/metabolism , Mytilidae/physiology
2.
Mar Environ Res ; 180: 105711, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35933825

ABSTRACT

Intracapsular embryonic development in the intertidal zone exposes embryos to various stress sources characteristic of this environment, including UV-R. They require defensive mechanisms to mitigate its adverse effects. The presence of total carotenoids (TC), and mycosporine-like amino acids (MAAs) was studied in adults, in encapsulated embryos, and in the egg capsule walls of the intertidal gastropod Acanthina monodon. Oxygen consumption rates (OCR) were determined in encapsulated and excapsulated embryos exposed to photosynthetically active radiation (PAR) and PAR + UV-A + UV-B to understand if the capsule wall is a protective structure for encapsulated embryos. The results showed the presence of TC in adult pedal and gonad tissues, and in all encapsulated stages. MAAs were not detected. The physical structure of the capsule wall retained most wavelengths, being particularly efficient in the UV-B range. Excapsulated embryos exposed to PAR + UV-A + UV-B radiation increased its OCR compared to encapsulated embryos, indicating the protective character of the capsule wall.


Subject(s)
Gastropoda , Amino Acids , Animals , Carotenoids , Embryonic Development , Gastropoda/metabolism , Ultraviolet Rays
3.
Mar Environ Res ; 169: 105353, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33991938

ABSTRACT

Encapsulated development with extraembryonic yolk may lead to competition for nutrients within egg capsules. In this research, different degrees of competition among embryos in subtidal egg capsules of Acanthina monodon resulted in considerable differences in hatching size. For newly hatched juveniles, individuals hatching from less crowded egg capsules showed better survival, larger SL, higher rates of oxygen consumption, and higher rates of food consumption. However, by 28 days after hatching, the largest surviving juveniles were the best-performing individuals, regardless of the initial embryo density within the capsules. In summary, more crowded egg capsules resulted in poorer survival. These findings may help to explain the variability seen in juvenile success in some field populations; much of that variation may reflect stressful experiences that the new recruits have had during the early stages of their encapsulated development.


Subject(s)
Gastropoda , Animals , Capsules , Oxygen Consumption
4.
PLoS One ; 16(4): e0250937, 2021.
Article in English | MEDLINE | ID: mdl-33930071

ABSTRACT

Active predators obtain energy and nutrients from prey through complex processes in which the energy gained must exceed the energy invested in finding and ingesting the prey. In addition, the amount of energy available will vary with the prey that are selected for consumption. The muricid gastropod Acanthina monodon inhabits rocky shores, where it routinely feeds on the mytilids Semimytilus algosus and Perumytilus purpuratus. In this study, S. algosus was highly preferred by the predator (over 90% were eaten) versus P. purpuratus (only 9% were eaten) when offered a mixed diet. The energetic cost of attacking one S. algosus individual was 91 J bivalve-1 while for P. purpuratus it was slightly higher: 95 J bivalve-1. Also, whereas A. monodon required on average 19 h to consume S. algosus, successful attacks on P. purpuratus required about 32% more time (25 h). In addition, a longer resting time was needed by the predator after preying on P. purpuratus before it initiated another attack. Moreover, the active metabolic costs associated with successfully attacking the prey increased 3.2 times over the basal metabolic costs when attacking S. algosus, but only by 2.5 times when attacking P. purpuratus. The calculations associated with preying on each species showed that the energetic gain per unit time likely accounts for the predator's preference for attacking S. algosus, even though predation on both species provided net energy gains for the predator. However, as S. algosus occurs seasonally at our study site, P. purpuratus would probably also be consumed due to its constant availability throughout the whole year.


Subject(s)
Carnivora/physiology , Ecosystem , Food Chain , Gastropoda/physiology , Mytilidae/physiology , Predatory Behavior/physiology , Animals , Species Specificity
5.
Mar Environ Res ; 161: 105120, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32866683

ABSTRACT

Acanthina monodon commonly deposits its egg capsules in the intertidal zone. Capsule aerial exposure during low-tide can impact oxygen consumption rates (OCR) of embryos and intracapsular oxygen availability, and expose embryos to desiccation. OCR increased as embryonic development progressed, and was greater when capsules were submerged in seawater than when exposed to air. Oxygen available within the capsule was always less than that available in the immediate external environment, whether capsules were immersed or exposed. The highest internal oxygen concentrations were recorded during periods of air exposure for embryos in more advanced development stages. When exposed to air, capsules lost water the fastest when they contained early embryos, and suffered the highest mortalities following exposure. Collectively, these data suggest that, although encapsulation helps the embryos to develop across wildly fluctuating environmental conditions, the amount of stress the embryos experience will vary depending on their exact positioning within the intertidal zone.


Subject(s)
Gastropoda , Animals , Desiccation , Embryonic Development , Oxygen Consumption , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...