Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 71(3): 415-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26159775

ABSTRACT

Amoebae of the genus Acanthamoeba occur worldwide and in addition to being pathogens, are important vehicles for microorganisms with clinical and environmental importance. This study aimed to evaluate the profiling of endosymbionts in 12 isolates of Acanthamoeba using V3 region of 16S rDNA denaturing gradient gel electrophoresis (DGGE) and sequencing. The DGGE enabled us to characterize the endosymbionts diversity in isolates of Acanthamoeba, and to identify Paenibacillus sp., an emerging pathogen, as an amoebic endosymbiont. The results of this study demonstrated that Acanthamoeba is capable of transporting a large number of endosymbionts. This is the first study that reports, the presence of Paenibacillus sp. as amebic symbiont.


Subject(s)
Acanthamoeba/microbiology , Paenibacillus/isolation & purification , Paenibacillus/physiology , Symbiosis , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Denaturing Gradient Gel Electrophoresis , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Environ Sci Pollut Res Int ; 21(4): 2592-602, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24091525

ABSTRACT

This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.


Subject(s)
Achromobacter denitrificans/physiology , Biofuels , Brucellaceae/physiology , Gasoline , Hydrocarbons/metabolism , Pseudomonas aeruginosa/physiology , Soil Pollutants/metabolism , Achromobacter denitrificans/isolation & purification , Biodegradation, Environmental , Brucellaceae/isolation & purification , Carbon Dioxide/metabolism , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Microbial Consortia/physiology , Polymerase Chain Reaction , Pseudomonas aeruginosa/isolation & purification , RNA, Ribosomal, 16S/genetics , Soil Microbiology
3.
Article in English | MEDLINE | ID: mdl-22755524

ABSTRACT

The search for alternative sources of energy, such as biodiesel, has been stimulated, since this biofuel is highly susceptible for biodegradation and has low toxicity, thus, reducing the impact in ecosystems. The objective of this study was to select a bacterial consortium with potential for degrading diesel/biodiesel blends (B20) obtained from areas contaminated with hydrocarbons/esters. In order to evaluate the biodegrability of the blend, six enzyme assays were conducted: alkane hydroxylase, Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechol 3,4-dioxygenase, ρ-NPA hydrolysis (esterase), and release of fatty acids through titration (lipase), with estimative of total protein and biosurfactant production (surface tension measurement and emulsifying index E(24)). The best results obtained allowed the selection of four bacteria isolates (Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) for compiling a consortium, which will be used for bioaugmentation strategies in soils contaminated with these fuels. This consortium exhibited high potential for biodegradation of biodiesel, and might be an efficient alternative for cleaning up these contaminated environments.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Biofuels , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...