Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(13): 3143-3146, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776571

ABSTRACT

A continuous-wave crossed-Porro prism Ho3+:YAG laser is presented and compared with a corresponding mirror resonator. A maximum output power of 30.7 W is reached with a slope efficiency of 67.4% with respect to the absorbed pump power. The laser output beam shows a very good beam quality of better than M2 < 1.2 which clearly surpasses that of the mirror resonator. In terms of alignment sensitivity, the crossed-Porro prism resonator is superior to the mirror resonator due to the retro-reflective nature of the prisms in the axis around the apex.

2.
Appl Opt ; 60(22): F21-F26, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612857

ABSTRACT

A high-pulse-energy mid-infrared light source is presented, based on a zinc-germanium-phosphide optical parametric oscillator (ZGP OPO) pumped by an actively $Q$-switched high-pulse-energy ${{\rm Ho}^{3 +}}{:}{\rm YAG}$ laser. The ${{\rm Ho}^{3 +}}{:}{\rm YAG}$ pump laser source is capable of generating a pulse energy of 15 mJ from a single ${{\rm Ho}^{3 +}}{:}{\rm YAG}$ rod at room temperature at a pulse repetition frequency (PRF) of 700 Hz. A maximum power of 20.1 W at a central wavelength of 2090 nm can be obtained in continuous operation, with a slope efficiency of 45.1%. A good beam quality with an ${{\rm M}^2}$ better than 1.3 was achieved in $Q$-switched operation. The presented laser architecture was used as a suitable pump source for a ZGP-based OPO. Operated at a PRF of 2 kHz and pumped with a pulse energy of 8 mJ, a low conversion threshold of 1.5 W and a maximum total output power of 6.3 W could be obtained in a linear ZGP-based OPO. At maximum power, the peak power of the generated mid-infrared radiation exceeded 120 kW, while the beam quality was affected by the strong gain lens building inside the nonlinear material as a consequence of the high-energy pump pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...