Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 121(2): 445-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26972421

ABSTRACT

AIMS: Evaluate the in vitro effect of imidazolium salts (IMS) on the conidia germination and mycelial growth of Fusarium graminearum and their in vivo efficacy for suppressing the symptoms of the disease and infection of kernels in wheat plants. METHODS AND RESULTS: The minimum inhibitory concentrations (MIC) of three IMS (C16 MImCl, C16 MImMeS and C16 MImNTf2 ) were determined for four F. graminearum isolates using serial broth dilution method. The MICs found for all IMS were either 3·12 or 6·25 µg ml(-1) across the isolates, with the former as the most frequent. In the mycelial growth assay on potato dextrose agar media, only the C16 MImCl among the IMS reduced 50% of mycelial growth of one isolate at an estimated concentration of 0·32 mg ml(-1) . The time-kill curves showed a strong fungicidal effect starting 1 h after incubation at a concentration of 12·5 µg ml(-1) , representing a fourfold increase in the most frequent MIC. The C16 MImCl sprayed onto the spikes of potted wheat plants during the flowering stage reduced disease intensity at levels comparable to the commercial fungicide when applied preventatively (1 h prior to fungal inoculation), rather than curatively, and at the higher dosage (2 mg ml(-1) ) rather than lower dosage (0·5 mg ml(-1) ). CONCLUSIONS: C16 MImCl proved to be a potent inhibitor of F. graminearum growth and provided good levels of control of the disease at levels comparable to a commercial fungicide, in wheat plants treated prior to fungal infection during flowering stages. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests the potential of using IMS as alternative to the hazardous standard fungicides in the management of Fusarium head blight of wheat.


Subject(s)
Fungicides, Industrial/pharmacology , Fusarium/drug effects , Imidazoles/pharmacology , Plant Diseases/microbiology , Triticum/microbiology , Fusarium/growth & development , Fusarium/physiology , Microbial Sensitivity Tests , Plant Diseases/prevention & control , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Spores, Fungal/physiology
2.
J Appl Microbiol ; 119(2): 377-88, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26043668

ABSTRACT

AIMS: To investigate the antidermatophytic action of a complementary set imidazolium salts (IMS), determining structure-activity relationships and characterizing the IMS toxicological profiles. METHODS AND RESULTS: The susceptibility evaluation of 45 dermatophytic clinical isolates, treated in vitro with eleven different IMS (ionic compounds) and commercial antifungals (nonionic compounds), was performed by broth microdilution, following the standard norm of CLSI M38-A2. All dermatophytes were inhibited by IMS, where the lowest minimum inhibitory concentration (MIC) values were observed for salts with n-hexadecyl segment in the cation side chain, containing either the chloride or methanesulfonate anion. 1-n-Hexadecyl-3-methylimidazolium chloride (C16 MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16 MImMeS) acted as fungicides, even in extremely low concentrations, wherein C16 MImMeS exerted this effect on 100% of the tested dermatophytes. Some of these IMS provoked evident alterations on the fungi cell morphology, causing a total cell damage of ≥ 70%. Importantly, none of the screened IMS were cytotoxic, mutagenic or genotoxic to human leucocyte cells. CONCLUSIONS: This report demonstrates for the first time the strong antifungal potential of IMS against multidrug-resistant dermatophytes, without presenting toxicity to human leucocyte cells at MIC. SIGNIFICANCE AND IMPACT OF THE STUDY: The expressive antifungal activity of IMS, combined with the in vitro nontoxicity, makes them promising compounds for the safe and effective treatment of dermatophytoses, mainly when this skin mycosis is unresponsive to conventional drugs.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Dermatomycoses/microbiology , Drug Resistance, Multiple, Fungal , Imidazoles/pharmacology , Arthrodermataceae/growth & development , Dermatomycoses/drug therapy , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...