Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Br J Cancer ; 123(6): 942-954, 2020 09.
Article in English | MEDLINE | ID: mdl-32601464

ABSTRACT

BACKGROUND: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. METHODS: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. RESULTS: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. CONCLUSION: We propose that the chemokine axis CCL20-CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.


Subject(s)
Chemokine CCL20/biosynthesis , ErbB Receptors/physiology , Neoplasms/immunology , Tumor Microenvironment , ras Proteins/physiology , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Staging , Neoplasms/drug therapy , Neovascularization, Pathologic/etiology , Receptors, CCR6/physiology , Signal Transduction/physiology
3.
Exp Dermatol ; 27(6): 675-677, 2018 06.
Article in English | MEDLINE | ID: mdl-29461668

ABSTRACT

Recently, it has been reported that ingenol mebutate (IM) is an effective treatment option for anogenital warts (AGW), inducing fast wart necrosis within 24 hours in vivo. With regard to its mode of action, IM is thought to act both as an inducer of direct cytotoxic effects and immunologic mechanisms. To distinguish whether the wart necrosis is mainly caused by cytotoxic effects, or whether immune mechanisms are leading, we used time-lapse imaging to analyse IM-treated warts ex vivo over 24 hours. Ex vivo IM-treated warts, which have been detached from the immune system, did not show destructive necrosis, pointing towards a primarily immune-driven mode of action of IM in the treatment of AGW.


Subject(s)
Antineoplastic Agents/pharmacology , Condylomata Acuminata/drug therapy , Condylomata Acuminata/pathology , Diterpenes/pharmacology , Antineoplastic Agents/therapeutic use , Condylomata Acuminata/diagnostic imaging , Diterpenes/therapeutic use , Humans , Immunity/drug effects , Necrosis/immunology , Time-Lapse Imaging , Tissue Culture Techniques
4.
Eur J Med Res ; 23(1): 4, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29338773

ABSTRACT

BACKGROUND: Wound healing represents a dynamic process involving directional migration of different cell types. Chemokines, a family of chemoattractive proteins, have been suggested to be key players in cell-to-cell communication and essential for directed migration of structural cells. Today, the role of the chemokine network in cutaneous wound healing is not fully understood. Unraveling the chemokine-driven communication pathways in this complex process could possibly lead to new therapeutic strategies in wound healing disorders. METHODS: We performed a systematic, comprehensive time-course analysis of the expression and function of a broad variety of cytokines, growth factors, adhesion molecules, matrixmetalloproteinases and chemokines in a murine cutaneous wound healing model. RESULTS: Strikingly, chemokines were found to be among the most highly regulated genes and their expression was found to coincide with the expression of their matching receptors. Accordingly, we could show that resting and activated human primary keratinocytes (CCR3, CCR4, CCR6, CXCR1, CXCR3), dermal fibroblasts (CCR3, CCR4, CCR10) and dermal microvascular endothelial cells (CCR3, CCR4, CCR6, CCR8, CCR9, CCR10, CXCR1, CXCR2, CXCR3) express a distinct and functionally active repertoire of chemokine receptors. Furthermore, chemokine ligand-receptor interactions markedly improved the wound repair of structural skin cells in vitro. CONCLUSION: Taken together, we here present the most comprehensive analysis of mediators critically involved in acute cutaneous wound healing. Our findings suggest therapeutic approaches for the management of wound closure by targeting the chemokine network.


Subject(s)
Fibroblasts/metabolism , Keratinocytes/metabolism , Receptors, Chemokine/metabolism , Wound Healing , Animals , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Female , Fibroblasts/physiology , Humans , Keratinocytes/physiology , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred BALB C , Receptors, Chemokine/genetics
5.
J Dermatol Sci ; 71(1): 12-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23702389

ABSTRACT

BACKGROUND: Recent studies provided insights into the recruitment and activation pathways of leukocytes in atopic dermatitis, however, the underlying mechanisms of tissue remodeling in atopic skin inflammation remain elusive. OBJECTIVE: To identify chemokine-mediated communication pathways regulating tissue remodeling during atopic skin inflammation. METHODS: Analysis of the chemokine receptor repertoire of human dermal fibroblasts using flow cytometry and immunofluorescence. Quantitative real-time polymerase chain reaction and immunohistochemical analyses of chemokine expression in atopic vs. non-atopic skin inflammation. Investigation of the function of chemokine receptor CCR3 on human dermal fibroblasts through determining intracellular Ca(2+) mobilization, cell proliferation, migration, and repair capacity. RESULTS: Analyses on human dermal fibroblasts showed abundant expression of the chemokine receptor CCR3 in vitro and in vivo. Among its corresponding ligands (CCL5, CCL8, CCL11, CCL24 and CCL26) CCL26 demonstrated a significant and specific up-regulation in atopic when compared to psoriatic skin inflammation. In vivo, epidermal keratinocytes showed most abundant CCL26 protein expression in lesional atopic skin. In structural cells of the skin, TH2-cytokines such as IL-4 and IL-13 were dominant inducers of CCL26 expression. In dermal fibroblasts, CCL26 induced CCR3 signaling resulting in intracellular Ca(2+) mobilization, as well as enhanced fibroblast migration and repair capacity, but no proliferation. CONCLUSION: Taken together, findings of the present study suggest that chemokine-driven communication pathways from the epidermis to the dermis may modulate tissue remodeling in atopic skin inflammation.


Subject(s)
Cell Communication , Dermatitis, Atopic/immunology , Fibroblasts/immunology , Receptors, CCR3/metabolism , Skin/immunology , Calcium Signaling , Case-Control Studies , Cell Proliferation , Cells, Cultured , Chemokine CCL26 , Chemokines, CC/metabolism , Chemotaxis , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Fibroblasts/pathology , Humans , Inflammation Mediators/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Keratinocytes/immunology , Ligands , Receptors, CCR3/genetics , Signal Transduction , Skin/pathology , Th2 Cells/immunology , Time Factors , Up-Regulation , Wound Healing
6.
Stem Cells Dev ; 21(11): 1977-88, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22087798

ABSTRACT

Mesenchymal stromal cells (MSC) with distinct differentiation properties have been reported in many adult [eg, bone marrow (BM)] or fetal tissues [eg, cord blood (CB); umbilical cord (UC)] and are defined by their specific surface antigen expression and multipotent differentiation potential. The MSC identity of these cells should be validated by applying well-defined readout systems if a clinical application is considered. In order to determine whether cells isolated from human UC fulfill the criteria defined for MSC, the immunophenotype and differentiation potential including gene expression analysis of the most relevant lineage-specific markers were analyzed in the presented report in combination with the HOX-gene expression. Cells from the UC do not differentiate into osteoblasts demonstrated by Alizarin Red and Von Kossa staining in addition to real-time polymerase chain reaction (PCR)-analysis of runt-related transcription factor 2, bone sialoprotein, osteocalcin, osterix, bone morphogenetic proteins 2 and 4. Oil Red O staining as well as PCR analysis of peroxisome proliferator-activated receptor-gamma, fatty acid-binding protein 4, and perilipin revealed an absent adipogenic differentiation. The lack of potential to differentiate into chondrocytes was documented by Alcian-Blue periodic acid-Schiff, Safranin O staining, and real-time PCR analysis of SOX9. Furthermore, neither endothelial nor myogenic differentiation was documented after induction of UC-MSC. In comparison to CB- and BM-derived cells, UC cells revealed an absent trilineage differentiation capacity in vitro. Therefore, these cells should not be termed "mesenchymal stromal cells". The UC cells can be distinguished from CB- and BM-derived cells as well as from pericytes and foreskin fibroblasts by the expression of HOX-genes and the cell surface antigens CD56 and CD146.


Subject(s)
Cell Differentiation , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Anthraquinones/metabolism , Biomarkers/metabolism , CD146 Antigen/metabolism , Cell Lineage , Cell Shape , Fetal Blood/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Foreskin/cytology , Foreskin/metabolism , Humans , Immunophenotyping , Male , Mesenchymal Stem Cells/metabolism , Muscle Development , Osteoblasts/metabolism , Osteogenesis , Real-Time Polymerase Chain Reaction , Umbilical Cord/metabolism
7.
J Neurosurg ; 115(2): 281-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21513432

ABSTRACT

OBJECT: Five-aminolevulinic acid-mediated photodynamic therapy (ALA/PDT) can improve the clinical outcome in patients suffering from glioblastoma. Besides direct phototoxicity, additional mechanisms may contribute. Therefore, the authors studied the influence of ALA/PDT on glioblastoma's migratory and invasive behavior in a human glioma cell spheroid model. METHODS: Glioma spheroids were grown from human U373 and A172 cell lines. After ALA/PDT of spheroids, the authors assessed the migration of tumor cells and their capacity to invade a collagen matrix, as well as changes in their viability, morphology, and expression of matrix metalloproteinases (MMPs). RESULTS: The authors found that ALA/PDT caused long-lasting, nearly complete suppression of glioma cell migration and matrix invasion compared with nontherapeutic controls, including either irradiation or incubation with ALA only. Although ALA/PDT induced tumor cell apoptosis, suppression of migration/invasion was not simply due to phototoxicity because 50% of tumor cells remained vital throughout the observation period. Moreover, the morphology of ALA/PDT-treated cells changed significantly toward a polygonal, epithelial-like appearance, which was associated with alterations in the actin cytoskeleton. Furthermore, downregulation of MMP-7 and -8 was observed after treatment whereas other MMPs remained unchanged. CONCLUSIONS: In addition to directly eliminating glioma cells through apoptosis, ALA/PDT alters their invasiveness, possibly due to the effects on the cytoskeletal organization and MMP expression.


Subject(s)
Aminolevulinic Acid/pharmacology , Cell Movement/drug effects , Spheroids, Cellular/drug effects , Aminolevulinic Acid/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Glioma/drug therapy , Glioma/metabolism , Humans , Photochemotherapy , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
8.
Arthritis Rheum ; 52(5): 1504-16, 2005 May.
Article in English | MEDLINE | ID: mdl-15880822

ABSTRACT

OBJECTIVE: To investigate the activation and recruitment pathways of relevant leukocyte subsets during the initiation and amplification of cutaneous lupus erythematosus (LE). METHODS: Quantitative real-time polymerase chain reaction was used to perform a comprehensive analysis of all known chemokines and their receptors in cutaneous LE lesions, and the cellular origin of these chemokines and receptors was determined using immunohistochemistry. Furthermore, cytokine- and ultraviolet (UV) light-mediated activation pathways of relevant chemokines were investigated in vitro and in vivo. RESULTS: In the present study, we identified the CXCR3 ligands CXCL9 (interferon-gamma [IFNgamma]-induced monokine), CXCL10 (IFNgamma-inducible protein 10), and CXCL11 (IFN-inducible T cell alpha chemoattractant) as being the most abundantly expressed chemokine family members in cutaneous LE. Expression of these ligands corresponded with the presence of a marked inflammatory infiltrate consisting of mainly CXCR3-expressing cells, including skin-homing lymphocytes and blood dendritic cell antigen 2-positive plasmacytoid dendritic cells (PDCs). Within cutaneous LE lesions, PDCs accumulated within the dermis and were activated to produce type I IFN, as detected by the expression of the IFNalpha-inducible genes IRF7 and MxA. IFNalpha, in turn, was a potent and rapid inducer of CXCR3 ligands in cellular constituents of the skin. Furthermore, we demonstrated that the inflammatory CXCR3 ligands cooperate with the homeostatic chemokine CXCL12 (stromal cell-derived factor 1) during the recruitment of pathogenically relevant leukocyte subsets. Moreover, we showed that UVB irradiation induces the release of CCL27 (cutaneous T cell-attracting chemokine) from epidermal compartments into dermal compartments and up-regulates the expression of a distinct set of chemokines in keratinocytes. CONCLUSION: Taken together, our data suggest an amplification cycle in which UV light-induced injury induces apoptosis, necrosis, and chemokine production. These mechanisms, in turn, mediate the recruitment and activation of autoimmune T cells and IFNalpha-producing PDCs, which subsequently release more effector cytokines, thus amplifying chemokine production and leukocyte recruitment, finally leading to the development of a cutaneous LE phenotype.


Subject(s)
Chemokines, CXC/immunology , Intercellular Signaling Peptides and Proteins/immunology , Leukocytes/immunology , Lupus Erythematosus, Cutaneous/immunology , Radiation Injuries/immunology , Ultraviolet Rays/adverse effects , Cells, Cultured , Chemokine CXCL10 , Chemokine CXCL11 , Chemokine CXCL9 , Humans , Lupus Erythematosus, Cutaneous/pathology , Lymphocyte Activation
9.
J Immunol ; 174(8): 5082-91, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15814739

ABSTRACT

Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.


Subject(s)
Chemokines, CC/metabolism , Dermatitis, Atopic/immunology , Langerhans Cells/immunology , Receptors, Chemokine/metabolism , T-Lymphocytes/immunology , Allergens/administration & dosage , Animals , Antigens, Bacterial , Case-Control Studies , Cell Differentiation , Cell Movement , Cells, Cultured , Chemokine CCL1 , Chemokine CCL17 , Chemokine CXCL12 , Chemokines, CC/blood , Chemokines, CXC/metabolism , Child , Cytokines/metabolism , Dermatitis, Atopic/etiology , Dermatitis, Atopic/pathology , Humans , Immunoglobulin E/metabolism , In Vitro Techniques , Inflammation Mediators/metabolism , Langerhans Cells/pathology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mast Cells/immunology , Mice , Monocytes/immunology , Monocytes/pathology , Psoriasis/immunology , Psoriasis/pathology , Receptors, CCR8 , Staphylococcus aureus/immunology , T-Lymphocytes/pathology
10.
Nat Med ; 8(2): 157-65, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11821900

ABSTRACT

The skin-associated chemokine CCL27 (also called CTACK, ALP and ESkine) and its receptor CCR10 (GPR-2) mediate chemotactic responses of skin-homing T cells in vitro. Here we report that most skin-infiltrating lymphocytes in patients suffering from psoriasis, atopic or allergic-contact dermatitis express CCR10. Epidermal basal keratinocytes produced CCL27 protein that bound to extracellular matrix, mediated adhesion and was displayed on the surface of dermal endothelial cells. Tumor necrosis factor-alpha and interleukin-1beta induced CCL27 production whereas the glucocorticosteroid clobetasol propionate suppressed it. Circulating skin-homing CLA+ T cells, dermal microvascular endothelial cells and fibroblasts expressed CCR10 on their cell surface. In vivo, intracutaneous CCL27 injection attracted lymphocytes and, conversely, neutralization of CCL27-CCR10 interactions impaired lymphocyte recruitment to the skin leading to the suppression of allergen-induced skin inflammation. Together, these findings indicate that CCL27-CCR10 interactions have a pivotal role in T cell-mediated skin inflammation.


Subject(s)
Chemokines, CC/immunology , Inflammation/immunology , Receptors, Chemokine/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Cell Adhesion/immunology , Chemokine CCL27 , Endothelium, Vascular/immunology , Extracellular Matrix/immunology , Humans , Mice , Microscopy, Confocal , Receptors, CCR10 , Receptors, Lymphocyte Homing/immunology , Skin/pathology , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...