Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(41): 16379-16392, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27722535

ABSTRACT

The synthesis of four cyclometallated [Ir(C^N)2(N^N)][PF6] compounds in which N^N is a substituted 2,2'-bipyridine (bpy) ligand and the naphthyl-centred ligand 2,7-bis(2-(2-(4-(pyridin-2-yl)phenoxy)ethoxy)ethoxy)naphthalene provides the two cyclometallating C^N units is reported. The iridium(iii) complexes have been characterized by 1H and 13C NMR spectroscopies, mass spectrometry and elemental analysis, and their electrochemical and photophysical properties are described. Comparisons are made with a model [Ir(ppy)2(N^N)][PF6] compound (Hppy = 2-phenylpyridine). The complexes containing the naphthyl-unit exhibit similar absorption spectra and excitation at 280 nm leads to an orange emission. The incorporation of the naphthalene unit does not lead to a desirable blue contribution to the emission. Density functional theory calculations were performed to investigate the geometries of the complexes in their ground and first triplet excited states, as well as the energies and compositions of the highest-occupied and lowest unoccupied molecular orbital (HOMO and LUMO) manifolds. Trends in the HOMO-LUMO gaps agree with those observed electrochemically. The energy difference between the LUMO and the lowest unoccupied MO located on the naphthyl unit (LUMO+7) is large enough to explain why there is no contribution from the naphthyl-centred triplet excited state to the phosphorescence emission. Singlet excited states were also investigated. Light-emitting electrochemical cells (LECs) using the [Ir(C^N)2(N^N)][PF6] and [Ir(ppy)2(N^N)][PF6] complexes in the emissive layer were made and evaluated. The presence of the naphthyl-bridge between the cyclometallating units does not significantly alter the device response.

2.
Chem Sci ; 6(5): 2843-2852, 2015 May 01.
Article in English | MEDLINE | ID: mdl-29142683

ABSTRACT

A series of cyclometalated iridium(iii) complexes [Ir(C^N)2(N^N)][PF6] (N^N = 2,2'-bipyridine (1), 6-phenyl-2,2'-bipyridine (2), 4,4'-di-tert-butyl-2,2'-bipyridine (3), 4,4'-di-tert-butyl-6-phenyl-2,2'-bipyridine (4); HC^N = 2-(3-phenyl)phenylpyridine (HPhppy) or 2-(3,5-diphenyl)phenylpyridine (HPh2ppy)) are reported. They have been synthesized using solvento precursors so as to avoid the use of chlorido-dimer intermediates, chloride ion contaminant being detrimental to the performance of [Ir(C^N)2(N^N)][PF6] emitters in light-electrochemical cell (LEC) devices. Single crystal structure determinations and variable temperature solution 1H NMR spectroscopic data confirm that the pendant phenyl domains engage in multiple face-to-face π-interactions within the coordination sphere of the iridium(iii) centre. The series of [Ir(Phppy)2(N^N)]+ and [Ir(Ph2ppy)2(N^N)]+ complexes investigated include those with and without intra-cation face-to-face π-stacking. All the complexes display excellent luminescent properties, in particular when employed in thin solid films. The most important observation is that all the LECs using the [Ir(Phppy)2(N^N)]+ and [Ir(Ph2ppy)2(N^N)]+ emitters (i.e. with and without intra-cation π-stacking interactions) exhibit very stable luminance outputs over time, even when driven at elevated current densities. The most stable LEC had an extrapolated lifetime of more than 2500 hours under accelerated testing conditions.

3.
Dalton Trans ; 43(2): 738-50, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24145467

ABSTRACT

The synthesis and characterization of four iridium(iii) complexes [Ir(thpy)2(N^N)][PF6] where Hthpy = 2-(2'-thienyl)pyridine and N^N are 6-phenyl-2,2'-bipyridine (1), 4,4'-di-(t)butyl-2,2'-bipyridine (2), 4,4'-di-(t)butyl-6-phenyl-2,2'-bipyridine (3) or 4,4'-dimethylthio-2,2'-bipyridine (4) are described. The single crystal structures of ligand 4 and the complexes containing the [Ir(thpy)2(1)](+) and [Ir(thpy)2(4)](+) cations have been determined. In [Ir(thpy)2(1)](+), the pendant phenyl ring engages in an intra-cation π-stacking interaction with one of the thienyl rings in the solid state, and undergoes hindered rotation on the NMR timescale in [Ir(thpy)2(1)](+) and [Ir(thpy)2(3)](+). The solution spectra of [Ir(thpy)2(1)][PF6] and [Ir(thpy)2(4)][PF6] show emission maxima around 640 nm and are significantly red-shifted compared with [Ir(thpy)2(2)][PF6] and [Ir(thpy)2(3)][PF6] which have structured emission bands with maxima around 550 and 590 nm. In thin films, the emission spectra of the four complexes are similar with emission peaks around 550 and 590 nm and a shoulder around 640 nm that are reminiscent of the features observed in solution. In solution, quantum yields are low, but in thin films, values range from 29% for [Ir(thpy)2(1)][PF6] to 51% for [Ir(thpy)2(4)][PF6]. Density functional theory calculations rationalize the structured emission observed for the four complexes in terms of the (3)LC nature predicted for the lowest-energy triplet states that mainly involve the cyclometallated [thpy](-) ligands. Support for this theoretical result comes from the observed features of the low temperature (in frozen MeCN) photoluminescence spectra of the complexes. Photoluminescence and electroluminescence spectra of the complexes in a light-emitting electrochemical cell (LEC) device configuration have been investigated. The electroluminescence spectra are similar for all [Ir(thpy)2(N^N)][PF6] complexes with emission maxima at ≈600 nm, but device performances are relatively poor probably due to the poor charge-transporting properties of the complexes.

4.
Chemistry ; 19(26): 8597-609, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23649547

ABSTRACT

A new approach to obtain green-emitting iridium(III) complexes is described. The synthetic approach consists of introducing a methylsulfone electron-withdrawing substituent into a 4-phenylpyrazole cyclometalating ligand in order to stabilize the highest-occupied molecular orbital (HOMO). Six new complexes have been synthesized incorporating the conjugate base of 1-(4-(methylsulfonyl)phenyl)-1H-pyrazole as the cyclometalating ligand. The complexes show green emission and very high photoluminescence quantum yields in both diluted and concentrated films. When used as the main active component in light-emitting electrochemical cells (LECs), green electroluminance is observed. High efficiencies and luminances are obtained at low driving voltages. This approach for green emitters is an alternative to the widely used fluorine-based substituents in the cyclometalating ligands and opens new design possibilities for the synthesis of green emitters for LECs.

SELECTION OF CITATIONS
SEARCH DETAIL
...